Journals Books 2687-5527 doi.org/10.36287/setsci
Latest Issue Archive Future Issues About Us
Conference Proceedings

SETSCI - Volume 4 (6) (2019)
ISAS WINTER-2019 (ENS) - 4th International Symposium on Innovative Approaches in Engineering and Natural Sciences, Samsun, Turkey, Nov 22, 2019

Evaluation of the University Students Friendship Status Effect on Their Academic Achievement with Data Mining Techniques
Timuçin Bardak1, Selahattin Bardak2*
1Bartın University, Bartın, Turkey
2Sinop University, Sinop, Turkey
* Corresponding author: sbardak@sinop.edu.tr
Published Date: 2019-12-22   |   Page (s): 58-60   |    297     5
https://doi.org/10.36287/setsci.4.6.022

ABSTRACT There are many factors that affect students' motivation to learn. Number of friends, friendship satisfaction and communication skills are some of the important factors. In scientific studies, friendship and peer rejection have unique effects on academic achievement. Besides, it was emphasized that if friendship relations were positive, it was effective on emotional development. However, there are very limited number of studies examining the friendship relationships of university students by using data mining techniques. Data mining is widely used in many different disciplines today. In its most basic definition, data mining is the extraction of meaningful information from a data set. With the increase of computer the capacity and power, studies in the field of data science have become easier. In this study, the association between friendship, age, gender, department and academic achievement was analyzed with the frequently used association algorithm in data mining. Survey method was used to collect data. Rapidminer software, which is popular in the world, was used for data analysis. As a result of the study, it was determined that friendship relations should be taken into consideration in academic success. It is seen that communication quality is effective in school success as well as in social life. Meanwhile, it has been determined that data mining methods can be used effectively in academic achievement of students.
KEYWORDS Friendship, student, data mining, algorithm, communication
REFERENCES [1] Y. Sarıer, “Türkiye’de öğrencilerin akademik başarısını etkileyen faktörler: bir meta-analiz çalışması,” Hacettepe Üniversitesi Eğitim Fakültesi Dergisi, cilt 31(3), 2016.
[2] H. Demirtaş ve H. Güneş, “Eğitim yönetimi ve denetimi sözlüğü.” Ankara: Anı yayıncılık, 2002.
[3] İ. Arıcı, “İlköğretim din kültürü ve ahlak bilgisi dersinde öğrenci başarısını etkileyen faktörler (Ankara örneği),” Doktora Tezi, Ankara Üniversitesi, Ankara, 2007.
[4] S. J. Howie, and J. J. Pietersen, “Mathematics literacy of final year students: South African realities,” Studies in Educational Evaluation, vol. 27, pp. 7-25, 2001.
[5] Y. Şevik, “İlköğretim müdür ve müdür yardımcılarının öğrencilerin akademik başarısını etkileyen faktörlere ilişkin görüşleri ile akademik başarısına katkıları,” Yüksek Lisans Tezi, Mehmet Akif Üniversitesi, Burdur, 2014.
[6] D. B. Wang, “Family background factors and mathematics success: A comparison of Chinese and US students,” International Journal of Educational Research, vol. 41, pp. 40-54, 2004.
[7] S. Polat, “Akademik başarısızlığın toplumsal eşitsizlik temelinde çözümlenmesi,” Eğitim Bilim Toplum Dergisi, cilt 7(25), sayfa 46-61, 2009.
[8] Y. Özer ve D. Anıl, “Öğrencilerin fen ve matematik başarılarını etkileyen faktörlerin yapısal eşitlik modeli ile incelenmesi,” Hacettepe Üniversitesi Eğitim Fakültesi Dergisi, cilt 41, sayfa 313-324, 2011.
[9] S. Dağdelen, “Biyoloji derslerinde öğretmenlerin kişilerarası davranışı, sınıf öğrenme ortamı ve öğrenci başarısı arasındaki ilişkinin incelenmesi,” Yüksek Lisans Tezi, Marmara Üniversitesi, İstanbul, 2013.
[10] R. Agrawal, T. Imielinski, and A. Swami, “Mining association rules between sets of items in large databases,” International Conference on Management of Data (ACMSIGMOD ’93), 1993 paper 207-216,
[11] F. C. Özçakır ve A. Y. Çamurcu, “Birliktelik kuralı yöntemi için bir veri madenciliği yazılımı tasarımı ve uygulaması,” İstanbul Ticaret Üniversitesi Fen Bilimleri Dergisi, cilt 6(12), sayfa 21-37, 2007.
[12] E. Sözen, T. Bardak, H. Peker ve S. Bardak, “Apriori algoritması kullanılarak mobilya seçimde etkili olan faktörlerin analizi,” İleri Teknoloji Bilimleri Dergisi, cilt 6(3), sayfa 679-684, 2017.
[13] D. A. Ajak, E. Lilford, and E. Topal, “Application of predictive data mining to create mine plan flexibility in the face of geological uncertainty,” Resources Policy, vol. 55, pp. 62–79, 2018.
[14] C. M. Keet, A. Lawrynowicz, C. d'Amato, A. Kalousis, P. Nguyen, R. Palma, R. Stevens, and M. Hilario, “The data mining optimization ontology,” Journal of Web Semantics, vol. 32, pp. 43–53, 2015.
[15] S. Udayakumar, D. C. Senadeera, S. Yamunarani, and N. J. Cheon, “Demographics analysis of twitter users who tweeted on psychological articles and tweets analysis,” Procedia Computer Science, vol. 144, pp. 96–104, 2018.


SET Technology - Turkey

eISSN  : 2687-5527    
DOI : doi.org/10.36287/setsci

E-mail : info@set-science.com
+90 533 2245325

Tokat Technology Development Zone Gaziosmanpaşa University Taşlıçiftlik Campus, 60240 TOKAT-TURKEY
©2018 SET Technology