Journals Books 2687-5527 doi.org/10.36287/setsci
Latest Issue Archive Future Issues About Us
Conference Proceedings

SETSCI - Volume 4 (6) (2019)
ISAS WINTER-2019 (ENS) - 4th International Symposium on Innovative Approaches in Engineering and Natural Sciences, Samsun, Turkey, Nov 22, 2019

Comparison of Control Methods Approaches in Microgrid Architectures
Ayşe Bağıran1, Köksal Erentürk2*
1Ataturk University, Erzurum, Turkey
2Ataturk University, Erzurum, Turkey
* Corresponding author: keren@atauni.edu.tr
Published Date: 2019-12-22   |   Page (s): 253-257   |    212     6
https://doi.org/10.36287/setsci.4.6.070

ABSTRACT A microgrid is a power grid consists of distributed power generation units and loads. Microgrid is also a system that can operate in grid-connected mode and islanding (autonomous) mode. The control of distributed power generation units in microgrids is necessary for reliability and continuity of power grid. In this study, control methods applied for microgrid architectures previously were examined. Advantages and disadvantages of microgrid control methods were compared in tabulated form. These comparisons were evaluated for each control system by considering the conditions such as robustness, response rate of the system against parameter changes, stability of the system, elimination of harmonics in the system and having a nonlinear structure of the system. When determining the most suitable control method that can be applied to a microgrid system, it is necessary to consider the performance of the controller in unbalanced systems, sensitivity to parameter change in the system, switching problems, and response time of the system. As a result of this evaluation, it is concluded that controller design is an important phenomena if the location of the microgrid and the system parts to which it is connected have been taken into account.
KEYWORDS microgrid, distributed control, hierarchical control, decentralized control, distributed power generation
REFERENCES [1] A. M. Sani ve R. Iravani, «Potential-function based control of a microgrid in islanded and grid-connected modes,» IEEE Transactions on Power Systems, cilt 25, no. 4, pp. 1883-1891, 2010.
[2] M. N. Marwali, J. W. Jung ve A. Keyhani, «Control of distributed generation systems-Part II: Load sharing control,» IEEE Transactions on power electronics, cilt 19, no. 6, pp. 1551-1561, 2004.
[3] J. M. Guerrero, J. Matas, L. G. de Vicuña, M. Castilla ve J. Miret, «Decentralized control for parallel operation of distributed generation inverters using resistive output impedance,» IEEE Trans. Ind. Electron., cilt 54, no. 2, p. 994–1004, April 2007.
[4] J. M. Guerrero, J. C. Vasquez, J. Matas, L. G. de Vicuna ve M. Castilla, «Hierarchical control of droop-controlled AC and DC microgrids—A general approach toward standardization,» IEEE Trans. Ind. Electron., cilt 58, no. 1, p. 158–172, January 2011.
[5] A. M. Bouzid, J. M. Guerrero, A. Cheriti, M. Bouhamida, P. Sicard ve M. A. Benghanem, «A survey on control of electric power distributed generation systems for microgrid applications,» Renewable and Sustainable Energy Reviews, cilt 44, pp. 751-766, 2015.
[6] D. Zammit, C. S. Staines ve M. Apap, «Comparison between PI and PR current controllers in grid connected PV inverters,» WASET, International Journal of Electrical, Electronic Science and Engineering, cilt 8, no. 2, 2014.
[7] X. Wang, X. Ruan, C. Bao, D. Pan ve L. Xu, «Design of the PI regulator and feedback coefficient of capacitor current for grid-connected inverter with an LCL filter in discrete-time domain,» In 2012 IEEE energy conversion congress and exposition (Ecce), pp. 1657-1662, September 2012.
[8] J. G. Hwang, P. W. Lehn ve M. Winkelnkemper, «A generalized class of stationary frame-current controllers for grid-connected AC–DC converters,» IEEE Transactions on Power Delivery, cilt 25, no. 4, pp. 2742-2751, 2010.
[9] G. Shen, X. Zhu, J. Zhang ve D. Xu, «A new feedback method for PR current control of LCL-filter-based grid-connected inverter,» IEEE Transactions on Industrial Electronics, cilt 57, no. 6, pp. 2033-2041, 2010.
[10] M. Liserre, R. Teodorescu ve F. Blaabjerg, «Multiple harmonics control for three-phase grid converter systems with the use of PI-RES current controller in a rotating frame,» IEEE Transactions on power electronics, cilt 21, no. 3, pp. 836-841, 2006.
[11] Y. Jia, J. Zhao ve X. Fu, «Direct grid current control of LCL-filtered grid-connected inverter mitigating grid voltage disturbance,» IEEE Transactions on Power Electronics, cilt 29, no. 3, pp. 1532-1541, 2013.
[12] A. V. Timbus, R. Teodorescu , F. Blaabjerg, M. Liserre ve P. Rodriguez, «Linear and nonlinear control of distributed power generation systems,» n Conference Record of the 2006 IEEE Industry Applications Conference Forty-First IAS Annual Meeting, cilt 2, pp. 1015-1023, 2006.
[13] J. Rodriguez ve P. Cortes, «Predictive control of power converters and electrical drives,» John Wiley & Sons, cilt 40, 2012.
[14] J. Rodriguez, J. Pontt, C. A. Silva, P. Correa, P. Lezana, P. Cortés ve U. Ammann, «Predictive current control of a voltage source inverter,» IEEE transactions on industrial electronics, cilt 54, no. 1, pp. 495-503, 2007.
[15] Y. Baek, K. J. Lee ve D. S. Hyun, «Improved predictive current control for grid connected inverter applications with parameter estimation,» In 2009 IEEE Industry Applications Society Annual Meeting, pp. 1-6, October 2009.
[16] H. S. Heo, G. H. Choe ve H. S. Mok, «Robust predictive current control of a grid-connected inverter with harmonics compensation,» In 2013 Twenty-Eighth Annual IEEE Applied Power Electronics Conference and Exposition (APEC), pp. 2212-2217, March 2013.
[17] R. G. Mapari ve D. G. Wakde, «A simple predictive PWM voltage controlled technique for implementation of single phase inverter with precesion rectifier,» Journal of Engineering Research and Applications, cilt 3, pp. 1772-1775, 2013.
[18] M. A. Sofla, L. Wang ve R. King, «Modeling and control of sustainable power systems,» Springer, 2012.
[19] K. H. Ahmed, A. M. Massoud, S. J. Finney ve B. W. Williams, «A survey of control techniques for three-phase inverter-based distributed generation,» in Second international conference on microgrid, 2011.
[20] M. Jamil, «Repetitive current control of two-level and interleaved three-phase PWM utility connected converters,» Doctoral dissertation, University of Southampton,, 2012.
[21] Y. A. R. I. Mohamed ve E. F. El-Saadany, «An improved deadbeat current control scheme with a novel adaptive self-tuning load model for a three-phase PWM voltage-source inverter,» IEEE Transactions on Industrial Electronics, cilt 54, no. 2, pp. 747-759, 2007.
[22] A. V. Timbus, «Grid monitoring and advanced control of distributed power generation systems,» Institute of Energy Technology, Aalborg University, 2007.
[23] M. P. Kazmierkowski ve L. Malesani, «Current control techniques for three-phase voltage-source PWM converters: A survey,» IEEE Transactions on industrial electronics, cilt 45, no. 5, pp. 691-703, 1998.
[24] T. Midtsund, «Control of Power Electronic Converters in Distributed Power Generation Systems: Evaluation of Current Control Structures for Voltage Source Converters operating under Weak Grid Conditions,» Master's thesis, Institutt for elkraftteknikk, 2010.
[25] X. Dai ve Q. Chao, «The research of photovoltaic grid-connected inverter based on adaptive current hysteresis band control scheme,» In 2009 International Conference on Sustainable Power Generation and Supply, IEEE, pp. 1-8, April 2009.
[26] T. Noguchi, H. Tomiki, S. Kondo ve I. Takahashi, «Direct power control of PWM converter without power-source voltage sensors,» IEEE Trans. Ind. Appl., cilt 34, no. 3, p. 473–479, May/Jun 1998.
[27] G. Escobar, A. M. Stankovic, J. M. Carrasco, E. Galvan ve R. Ortega, «Analysis and design of direct power control (DPC) for a three phase synchronous rectifier via output regulation subspaces,» IEEE Trans. Power Electron., cilt 18, no. 3, p. 823–830, 2003.
[28] M. Malinowski, M. P. Kazmierkowski, S. Hansen, F. Blaabjerg ve G. D. Marques, «Virtual-flux-based direct power control of three-phase PWM rectifiers,» IEEE Trans. Ind. Appl., cilt 37, no. 4, p. 1019–1027, Jul./Aug. 2001.
[29] M. Malinowski, M. Jasinski ve M. P. Kazmierkowsk, «Simple direct power control of three-phase PWM rectifier using space-vector modulation (DPC-SVM),» IEEE Trans. Ind. Electron., cilt 51, no. 4, p. 447–454, April 2004.
[30] S. Aurtenechea, M. A. Rodr´ıguez, E. Oyarbide ve J. R. Torrealday, «Predictive control strategy for DC/AC converters based on direct power control,» IEEE Trans. Ind. Electron., cilt 54, no. 3, p. 1261–1271, Jun. 2007.
[31] S. Vazquez, J. A. Sanchez, J. M. Carrasco, J. I. Leon ve E. Galvan, «A model-based direct power control for three-phase power converters,» IEEE Trans. Ind. Electron., cilt 55, no. 4, p. 1647–1657, April 2008.
[32] D. Zhi, L. Xu ve B. W. Williams, «Improved direct power control of grid-connected DC/AC converters,» IEEE Transactions on Power Electronics, cilt 24, no. 5, pp. 1280-1292, 2009.
[33] X. Hao, X. Yang, R. Xie, L. Huang, T. Liu ve Y. Li, «A fixed switching frequency integral resonant sliding mode controller for three-phase grid-connected photovoltaic inverter with LCL-filter,» In 2013 IEEE ECCE Asia Downunder, pp. 793-798, June 2013.
[34] S. L. Jung ve Y. Y. Tzou, «Discrete sliding-mode control of a PWM inverter for sinusoidal output waveform synthesis with optimal sliding curve,» IEEE transactions on power electronics, cilt 11, no. 4, pp. 567-577, 1996.
[35] M. A. Sofla ve R. King, «Control method for multi-microgrid systems in smart grid environment—Stability, optimization and smart demand participation,» In 2012 IEEE PES Innovative Smart Grid Technologies (ISGT), pp. 1-5, January 2012.
[36] J. Hu ve B. Hu, «Direct active and reactive power regulation of grid connected voltage source converters using sliding mode control approach,» In 2010 IEEE International Symposium on Industrial Electronics, pp. 3877-3882, July 2010.
[37] T. Hornik ve Q. C. Zhong, «H∞ repetitive current controller for grid-connected inverters,» In 2009 35th Annual Conference of IEEE Industrial Electronics, pp. 554-559, November 2009.
[38] T. Hornik ve Q. C. Zhong, «H∞ current control strategy for the neutral point of a three-phase inverter,» In 2011 50th IEEE Conference on Decision and Control and European Control Conference, pp. 2994-2999, December) 2011.
[39] T. Hornik ve Q. C. Zhong, «A Current-Control Strategy for Voltage-Source Inverters in Microgrids Based on H∞ and Repetitive Control,» IEEE Transactions on Power Electronics, cilt 26, no. 3, pp. 943-952, 2010.
[40] T. Hornik ve Q. C. Zhong, «Voltage control of grid-connected inverters based on H∞ and repetitive control,» In 2010 8th World Congress on Intelligent Control and Automation, pp. 270-275, July 2010.
[41] T. Hornik ve Q. C. Zhong, «H∞ repetitive current-voltage control of inverters in microgrids,» In IECON 2010-36th Annual Conference on IEEE Industrial Electronics Society, pp. 3000-3005, IEEE November 2010.
[42] Q. C. Zhong ve T. Hornik, «Cascaded current–voltage control to improve the power quality for a grid-connected inverter with a local load,» IEEE Transactions on Industrial Electronics, cilt 60, no. 4, pp. 1344-1355, 2012.
[43] T. Hornik ve Q. C. Zhong, «Voltage control of grid-connected inverters based on H∞ and repetitive control,» In 2010 8th World Congress on Intelligent Control and Automation, pp. 270-275, July 2010.
[44] G. W. McLeary, «H-infinity Control Design Approach for Near-zero Speed Submarine Depth Control,» Doctoral dissertation, George Mason University, 2005.
[45] S. Hara, Y. Yamamoto, T. Omata ve M. Nakano, «Repetitive control system: A new type servo system for periodic exogenous signals,» IEEE Transactions on automatic control, cilt 33, no. 7, pp. 659-668, 1988.
[46] M. A. Abusara, M. Jamil ve S. M. Sharkh, «Repetitive current control of an interleaved grid-connected inverter,» In 2012 3rd IEEE International Symposium on Power Electronics for Distributed Generation Systems (PEDG), pp. 558-563, June 2012.
[47] T. Liu, X. Hao, X. Yang, M. Zhao, Q. Huang ve L. Huang, «A novel repetitive control scheme for three-phase grid-connected inverter with LCL filter,» In Proceedings of The 7th International Power Electronics and Motion Control Conference, pp. 335-339, June 2012.
[48] D. Chen, J. Zhang ve Z. Qian, «An improved repetitive control scheme for grid-connected inverter with frequency-adaptive capability,» IEEE Transactions on Industrial Electronics, cilt 60, no. 2, pp. 814-823, 2012.
[49] D. Chen, J. Zhang ve Z. Qian, «Research on fast transient and 6n±1 harmonics suppressing repetitive control scheme for three-phase grid-connected inverters,» IET Power Electronics, cilt 6, no. 3, pp. 601-610, 2013.
[50] Y. A. R. I. Mohamed ve E. F. El-Saadany, «Adaptive discrete-time grid-voltage sensorless interfacing scheme for grid-connected DG-inverters based on neural-network identification and deadbeat current regulation,» IEEE Transactions on Power Electronics, cilt 23, no. 1, pp. 308-321, 2008.
[51] Y. A. R. I. Mohamed ve E. F. El-Saadany, «A robust natural-frame-based interfacing scheme for grid-connected distributed generation inverters,» IEEE transactions on energy conversion, cilt 26, no. 3, pp. 728-736, 2011.
[52] C. Ma ve D. Huang, «Comparative study of PI controller and fuzzy logic controller for three-phase grid-connected inverter,» In 2011 IEEE International Conference on Mechatronics and Automation, pp. 2067-2071, August 2011.
[53] W. Huang, M. Lu ve L. Zhang, «Survey on Microgrid Control Strategies,» Procedia, pp. 206-212, 2011.


SET Technology - Turkey

eISSN  : 2687-5527    
DOI : doi.org/10.36287/setsci

E-mail : info@set-science.com
+90 533 2245325

Tokat Technology Development Zone Gaziosmanpaşa University Taşlıçiftlik Campus, 60240 TOKAT-TURKEY
©2018 SET Technology