Open Access

Role of Efflux Pump in Biofilm Formation of Multidrug-Resistant Pseudomonas aeruginosa

Ceren Başkan1*, Belgin Sırıken2
1Amasya University, Amasya, Turkey
2Ondokuz Mayıs University, Samsun, Turkey
* Corresponding author: cerennyavuz@hotmail.com

Presented at the 4th International Symposium on Innovative Approaches in Health and Sports Sciences (ISAS WINTER-2019 (HSS)), Samsun, Turkey, Nov 22, 2019

SETSCI Conference Proceedings, 2019, 12, Page (s): 131-135 , https://doi.org/10.36287/setsci.4.9.081

Published Date: 23 December 2019

Pseudomonas (P.) aeruginosa is Gram-negative an opportunistic human pathogen associated with nosocomial infections particularly immuno-compromised patients such as cystic fibrosis, cancer, and diabetes. This organism can also develop high-level intrinsic and acquired antibiotic resistance by different mechanisms when it grows in a biofilm. The formation of biofilm, known as a passive resistance mechanism, inhibits the diffusion of antibiotics due to the polysaccharide structure surrounding the bacteria and makes the bacteria resistant. One of the most important mechanisms responsible for multiple antimicrobial resistance in biofilm structures is the efflux pump. Five families of bacterial drug efflux pumps have been identified that contribute to the efflux pathways including the ATP binding cassette (ABC) family, major facilitator superfamily (MFS), the multidrug and toxin extrusion (MATE) family, the small multidrug resistance (SMR), the resistance nodulation cell division (RND) superfamily. Among these pumps, the RND efflux pumps in P. aeruginosa play a major role in MDR. Furthermore, there are 11 types of RND efflux pumps in P. aeruginosa for the release of multi-class drugs. Of these, MexAB-OprM, MexCD-OprJ, MexEF-OprN and MexXY are most important due to their high prevalence in clinical strains. In summary this review focus on the aim to give an overview of the relationship between efflux mediated resistance and biofilm formation in bacteria.

Keywords - Pseudomonas aeruginosa, multidrug resistance, biofilm formation, efflux pump

[1] S. Gholami, M. Tabatabaei, N. Sohrabi, Comparison of biofilm formation and antibiotic resistance pattern of Pseudomonas aeruginosa in human and environmental isolate. Microbial Pathogenesis, vol. 109, pp. 94-98, 2017.
[2] M. Chatterjee, C. Anju, L. Biswas, A.V. Kumar, G.C. Mohan, and R. Biswas, Mini Review: Antibiotic resistance in Pseudomonas aeruginosa and alternative therapeutic options. J. Med. Microbiol. Vol. 30, pp. 648-658, 2016.
[3] R. Davis, and P.D. Brown, Multiple antibiotic resistance index, fitness and virulence potential in respiratory Pseudomonas aeruginosa from Jamaica. J. Med. Microbiol., vol. 65, pp. 261–271, 2016.
[4] J. Xiong, M. Deraspe, N. Iqbal, S. Krajden, W. Chapman, K. Dewar, and P.H. Roy, Complete genome of a panresistant Pseudomonas aeruginosa strain, isolated from a patient with respiratory failure in a canadian community hospital. Genome Announc., vol. 5, pp. 1-10, 2017.
[5] Y. Yuan, K. Qu, D. Tan, X. Li, L. Wang, C. Cong, Z. Xiu, and Y. Xu, Isolation and characterization of a bacteriophage and its potential to disrupt multi-drug resistant Pseudomonas aeruginosa biofilms. Microbial Pathogenesis, vol. 128, pp. 329–336, 2019.
[6] K. Poole, Multidrug Efflux Pumps and Antimicrobial Resistance in Pseudomonas aeruginosa and Related Organisms. J. Mol. Microbiol. Biotechnol. Vol. 3(2), pp. 255-264, 2001.
[7] D.M. Livermore, Interplay of impermeability and chromosomal beta-lactamase activity in imipenem-resistant Pseudomonas aeruginosa. Antimicrob. Agents Chemother, vol, 36, pp. 2046–2048, 1992.
[8] M.L. Sobel, G.A. McKay, and K. Poole, K. Contribution of the MexXY multidrug transporter to aminoglycoside resistance in Pseudomonas aeruginosa clinical isolates. Antimicrob. Agents Chemother, vol. 47, pp. 3202–3207, 2003.
[9] S. Emami, I. Nikokar, Y. Ghasemi, M. Ebrahimpour, H. Ebrahim-Saraie, A. Araghian, S. Faezi, M. Farahbakhsh, and A. Rajabi, Antibiotic resistance pattern and distribution of pslA gene among biofilm producing Pseudomonas aeruginosa isolated from waste water of a burn center. Jundishapur J. Microbiol, vol. 8, pp. e23669, 2015.
[10] A.N. Alam, J. Sarvari, M. Motamedifar, H. Khoshkharam, M. Yousefi, R. Moniri and A. Bazargani, The occurrence of blaTEM, blaSHV and blaOXA genotypes in Extended- Spectrum β-Lactamase (ESBL)-producing Pseudomonas aeruginosa strains in Southwest of Iran. Gene Reports, vol. 13, pp. 19–23, 2018.
[11] J.M.C. Jefferies, T. Cooper, T. Yam, and S.C. Clarke, Pseudomonas aeruginosa outbreaks in the neonatal intensive care unit – a systematic review of risk factors and environmental sources. J. Med. Microbiol., vol. 61, pp. 1052-1061, 2012.
[12] D. Balasubmanian, L. Schneper, H. Kumari, and K. Mathee, A dynamic and intricate regulatory network determines Pseudomonas aeruginosa virulence. Nucleic Acids Res., vol. 7, pp. 1-20, 2013.
[13] A.R. Lari, L. Azimi, S. Soroush, and M. Taherikalani, Low prevalence of metallo-betalactamase in Pseudomonas aeruginosa isolated from a tertiary burn care center in Tehran. Int. J. Immunopathol. Pharmacol, vol. 28, pp. 384–389, 2015.
[14] T.M. Madigan, and J.M. Martinko, J.M. Brock Mikroorganizmaların Biyolojisi, (Çev: C. çökmüş. Ankara: PALME Dizgi-Grafik Tasarım Birimi 2009.
[15] A. Oliver, X. Mulet, C.L. Causapé, and C. Juan, The increasing threat of Pseudomonas aeruginosa high-risk clones. Drug Resist. Updat., vol. 22, pp. 41–59, 2015.
[16] N.M. Maurice, B. Bedi, and R.T. Sadikot, Pseudomonas aeruginosa Biofilms: Host Response and Clinical Implications in Lung Infections. American Journal of Respiratory Cell and Molecular Biology, vol. 58,4; pp. 428-440, 2018.
[17] C. Reichhardt, and M.R. Parsek, Confocal Laser Scanning Microscopy for Analysis of Pseudomonas aeruginosa Biofilm Architecture and Matrix Localization. Frontiers in Microbiology, vol. 10, pp. 677-686, 2019.
[18] J. Sun, Z. Deng, and A. Yan, Bacterial multidrug efflux pumps: Mechanisms, physiology and pharmacological exploitations. Biochemical and Biophysical Research Communications, vol. 453, pp. 254–267, 2014.
[19] M. Martıns, M. Vıveıros, I. Couto, S.S. Costa, T. Pacheco, S. Fannıng, J.M. Pages, and L. Amaral, L, Identification of Efflux Pump-mediated Multidrug-resistant Bacteria by the Ethidium Bromide-agar Cartwheel Method. In vivo, vol. 25, pp. 171-178, 2011.
[20] A. Kumar and H.P. Schweizer, Bacterial resistance to antibiotics: active efflux and reduced uptake. Adv Drug Deliv Rev, vol. 57, pp. 1486- 1513, 2005.
[21] M.A. Webber and L.F.V. Piddock, The importance of efflux pumps in bacterial antibiotic resistance. J Antimicrob Chemother, vol. 51, pp. 9- 11, 2003.
[22] U. Hasdemir, Çoklu ilaç direncinde bakteri hücre duvarı organizasyonu ve aktif pompa sistemlerinin rolü the role of cell wall organızatıon and actıve efflux pump systems ın multıdrug resıstance of bacterıa. Mikrobiyol bült, vol. 41, pp. 309-327, 2007.
[23] T. Siriyong, P. Srimanote, S. Chusri, B. Yingyongnarongkul, C. Suaisom, V. Tipmanee, and S.P. Voravuthikunchai, Conessine as a novel inhibitor of multidrug efflux pump systems in Pseudomonas aeruginosa. BMC Complement. Altern. Med, vol.17, pp. 405-412, 2017.
[24] J. Handzlik, A. Matys, and K. Kiec´-Kononowicz, Recent advances in multi-drug resistance (MDR) efflux pump inhibitors of Gram-positive bacteria S. aureus, Antibiotics, vol. 2, pp. 28–45, 2013.
[25] T. Köhler, J.C. Pechère, and P. Plesiat, Bacterial antibiotic efflux systems of medical importance, Cellular and Molecular Life Sciences, vol. 56 (9-10), pp. 771-778, 1999.
[26] S.S. Pao, I.T. Paulsen, and M.H. Saier, Major facilitator superfamily, Microbiology and Molecular Biology Reviews, vol. 62 (1), pp. 1-34 1998.
[27] K. Nishino, T. Latifi, and E.A. Groisman, Virulence and drug resistance roles of multidrug efflux systems of Salmonella enterica serovar Typhimurium, Molecular Microbiology, vol. 59, pp. 126-141, 2006.
[28] H. Nikaido, Multidrug Resistance in Bacteria, Annual Review of Biochemestry, vol. 78, pp. 119-146, 2009.
[29] I.D. Islamieh, D. Afshar, M. Yousefi, and D. Esmaeili, Efflux Pump Inhibitors Derived From Natural Sources as Novel Antibacterial Agents Against Pseudomonas aeruginosa: A Review. Int J Med Rev, vol. 5(3), pp. 94-105, 2018.
[30] G. Rampioni, C.R. Pillai, F. Longo, R. Bondi, V. Baldelli, M. Messina, F. Imperi, P. Visca, and L. Leoni, Effect of efflux pump inhibition on Pseudomonas aeruginosa transcriptome and virulence. Sci. Report, vol. 7, pp. 1-14, 2017.
[31] H. Er, M. Şen, and M. Altındiş, M, İdrar yolu enfeksiyonlarından izole edilen Pseudomonas aeruginosa’larda antibiyotik direnci. The antibiotic resistance in Pseudomonas aeruginosas isolated from urinary tract infections. Turk. J. Clin. Lab, vol. 3, pp. 80-84, 2015.
[32] J.M.A. Blair, M.A., Webber, A.J. Baylay, D.O. Ogbolu, and L.J.V Piddock, Molecular mechanisms of antibiotic resistance. Microbiol, vol. 13, pp. 42-52, 2014.
[33] P.D. Lister, D.J. Wolter, and N.D. Hanson, Antibacterial-resistant Pseudomonas aeruginosa: clinical impact and complex regulation of chromosomally encoded resistance mechanisms. Clin Microbiol Rev, vol. 22(4), pp. 582-610, 2009.
[34] M. Kvist, V. Hancock, and P. Klemm, Inactivation of efflux pumps abolishes bacterial biofilm formation, Appl. Environ. Microbiol, vol. 74, pp. 7376–7382, 2008.

0
Citations (Crossref)
263
Total Views
16
Total Downloads

Licence Creative Commons This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
SETSCI 2025
info@set-science.com
Copyright © 2025 SETECH
Tokat Technology Development Zone Gaziosmanpaşa University Taşlıçiftlik Campus, 60240 TOKAT-TÜRKİYE