Elektrikli Araçlarda Elektriksel Frenlemenin Bulanık Mantık Tabanlı Karar Destek Sistemleri ile Tasarlanması
Mehmet Şen1, Muciz Özcan2*
1Necmettin Erbakan Üniversitesi, Konya, Türkiye
2Necmettin Erbakan Üniversitesi, Konya, Türkiye
* Corresponding author: mehmet.sen@asbu.edu.tr
Presented at the 6th International Symposium on Innovative Approaches in Smart Technologies (ISAS-WINTER-2022), Online, Turkey, Dec 08, 2022
SETSCI Conference Proceedings, 2022, 14, Page (s): 12-15 , https://doi.org/10.36287/setsci.5.2.003
Published Date: 22 December 2022 | 1434 30
Abstract
Elektrikli araçlarda elektrik, mekanik ve kimyasal bileşenler kullanılmaktadır. Bu bileşenler çevre koşullarından ve aracın kullanıldığı yol durumundan dolayı farklı dinamiklere sahip olabilir. Bu nedenle aracın ortam durumuna göre dinamiklerinin ayarlanması bulanık mantık sistemi ile gerçekleştirilebilir. Bu çalışma elektrikli araçlarda, elektriksel frenlenmenin geliştirilmesi için bulanık mantık tabanlı bir uygulama önermektedir. MATLAB/Simulink ile geçekleştirilen uygulamada 3 farklı elektriksel frenleme çıktısı vardır. Frenleme tipinin seçiminde; batarya doluluk oranı (SOC), araç hızı, frenleme oranı ve batarya sıcaklığı değişken olarak belirlenmiştir. Bu çalışmada elektrikli araçlarda en uygun frenlemenin seçimi için 81 farklı kural belirlenmiştir. Belirlenen kontrol sisteminde araç kullanımı boyunca güvenlik ön planda olmak üzere, araçtan en yüksek seviyede geri kazanım elde edilmesi sağlanmıştır. Geliştirilen kontrol sistemi modelinde en yüksek seviyeden geri kazanım elde edilirken, batarya yaşlanması dikkate alınmıştır. Bulanık mantık çıktısı incelendiğinde yüksek akım ve düşük akım gibi anormal durumlarda bataryaya enerji akışı gerçekleşmemektedir. Bu sayede elektrikli araçlarda batarya bozulmasını en aza indirmek için temel stratejiler sunulmuştur.
Keywords - batarya sıcaklığı, bulanık mantık, dinamik frenleme, elektrikli araç, faydalı frenleme
References
[1] M. Özcan and H. Günay, "Control of diesel engines mounted on vehicles in mobile cranes via CAN bus," Turkish Journal of Electrical Engineering & Computer Sciences, vol. 21, pp. 2181-2190, 2013, doi: 10.3906/elk-1203-96.
[2] H. Oğuz, M. Özcan, M. Yağcı, and A. O. Özkan, "Automation of the Two Stage Biodiesel Production Process," International Journal of Automotive Engineering and Technologies, vol. 4, no. 4, pp. 254-260.
[3] Z. J. Zhang, Y. Y. Dong, and Y. W. Han, "Dynamic and Control of Electric Vehicle in Regenerative Braking for Driving Safety and Energy Conservation," (in English), J Vib Eng Technol, vol. 8, no. 1, pp. 179-197, Feb 2020, doi: 10.1007/s42417-019-00098-0.
[4] W. Xu, H. Chen, H. Y. Zhao, and B. T. Ren, "Torque optimization control for electric vehicles with four in-wheel motors equipped with regenerative braking system," (in English), Mechatronics, vol. 57, pp. 95-108, Feb 2019, doi: 10.1016/j.mechatronics.2018.11.006.
[5] Q. W. Xu, C. Zhou, H. Huang, and X. F. Zhang, "Research on the Coordinated Control of Regenerative Braking System and ABS in Hybrid Electric Vehicle Based on Composite Structure Motor," (in English), Electronics-Switz, vol. 10, no. 3, Feb 2021, doi: 10.3390/electronics10030223.
[6] D. M. Wu, Y. Li, J. W. Zhang, and C. Q. Du, "Optimal regenerative braking torque of permanent-magnet synchronous motor in electric vehicles," (in English), Int J Heavy Veh Syst, vol. 27, no. 3, pp. 359-386, 2020.
[7] M. R. Pinandhito, K. Indriawati, and M. Harly, "Active Fault Tolerant Control Design in Regenerative Anti-lock Braking System of Electric Vehicle with Sensor Fault," (in English), Aip Conf Proc, vol. 2088, 2019.
[8] I. Pielecha, W. Cieslik, and A. Szalek, "Energy recovery potential through regenerative braking for a hybrid electric vehicle in a urban conditions," (in English), Iop C Ser Earth Env, vol. 214, 2019.
[9] M. G. S. P. Paredes and J. A. Pomilio, "Comparative Strategies of Control for Regenerative Braking in Electric Vehicles," (in English), Brazil Power Electr, 2019.
[10] C. C. Monroy, C. A. Siachoque, I. C. Duran-Tovar, and A. R. M. Guerra, "Comparative Study of Regenerative Braking System and Regeneration with Constant Kinetic Energy in Battery Electric Vehicles," (in Spanish), Ingenieria-Bogota, vol. 25, no. 3, Sep-Dec 2020, doi: 10.14483/23448393.16220.
[11] S. Manoharan, K. Krishnamoorthy, A. Sathyaseelan, and S. J. Kim, "High-power graphene supercapacitors for the effective storage of regenerative energy during the braking and deceleration process in electric vehicles," (in English), Mater Chem Front, vol. 5, no. 16, pp. 6200-6211, Aug 21 2021, doi: 10.1039/d1qm00465d.
[12] S. Lupberger, W. Degel, D. Odenthal, and N. Bajcinca, "Nonlinear Control Design for Regenerative and Hybrid Antilock Braking in Electric Vehicles," (in English), Ieee T Contr Syst T, vol. 30, no. 4, pp. 1375-1389, Jul 2022, doi: 10.1109/Tcst.2021.3109340.
[13] Z. Q. Liu, S. Lu, and R. H. Du, "A genetic-fuzzy control method for regenerative braking in electric vehicle," (in English), Int J Comput Sci Mat, vol. 11, no. 3, pp. 263-277, 2020.
[14] J. Liang, P. D. Walker, J. Ruan, H. T. Yang, J. L. Wu, and N. Zhang, "Gearshift and brake distribution control for regenerative braking in electric vehicles with dual clutch transmission," (in English), Mech Mach Theory, vol. 133, pp. 1-22, Mar 2019, doi: 10.1016/j.mechmachtheory.2018.08.013.
[15] W. F. Li, H. P. Du, and W. H. Li, "Driver intention based coordinate control of regenerative and plugging braking for electric vehicles with in-wheel PMSMs," (in English), Iet Intell Transp Sy, vol. 12, no. 10, pp. 1300-1311, Dec 2018, doi: 10.1049/iet-its.2018.5300.
[16] M. Kumar, K. A. Singh, K. Chaudhary, R. K. Saket, and B. Khan, "Regenerative Braking in Electric Vehicle Using Quadratic Gain Bidirectional Converter," (in English), Int T Electr Energy, vol. 2022, Jan 31 2022.
[17] K. Krishnamoorthy, P. Pazhamalai, V. K. Mariappan, S. Manoharan, D. Kesavan, and S. J. Kim, "Two-Dimensional Siloxene-Graphene Heterostructure-Based High-Performance Supercapacitor for Capturing Regenerative Braking Energy in Electric Vehicles," (in English), Adv Funct Mater, vol. 31, no. 10, Mar 2021.
[18] S. C. V. Kumar, K. Karunanithi, S. P. Raja, S. Ramesh, P. Chandrasekar, and R. Obulupathy, "Modelling of electric vehicle charging station and controlled by fuzzy logic controller with different modes of operation," (in English), J Control Decis, May 26 2022, doi: 10.1080/23307706.2022.2074901.