Phylogenetic Analysis of *Streptomyces* sp. H2AK isolated from soil in Kuşadası

Demet Tatar** and Ayşel Veyişoglu

1Department of Medical Services and Techniques, Osmançık Ömer Derindere Vocational School, Hitit University, Corum, Turkey
2Department of Medical Services and Techniques, Vocational School of Health Services, Sinop University, Sinop, Turkey
*Corresponding author: demettatar@hitit.edu.tr

Abstract – *Streptomyces* is a genus of Gram-positive bacteria that has a filamentous form similar to fungi. *Streptomyces* produces bioactive secondary metabolites, such as antifungals, antivirals, antitumorals and various antibiotics. The aim of this study is to carry out phylogenetic analysis of *Streptomyces* sp. H2AK isolated from soil sample taken from the Kuşadası located near Aydın province. *Streptomyces* sp. H2AK, was picked after 14 days of incubation at 28°C on Humic acid-vitamin agar containing Cycloheximide (50 μg/ml) and Nalidixic acid (10 μg/ml). Genomic DNA isolation was performed according to DNA isolation method [1]. The 16S rRNA gene was amplified by PCR using universal primers 27f and 1525r. Phylogenetic analyses were performed by using three different algorithms with MEGA 7 software. H2AK showed the highest 16S rRNA gene sequence similarity with *Streptomyces marokkonensis* Ap1T (98.90 %). When the polyphasic taxonomic analyses were completed, *Streptomyces* sp. H2AK isolate may be introduced into the literature as a new species of the genus *Streptomyces*. This study was supported by Hitit University (ODMYO19003.18.001).

Keywords – Taxonomy, Phylogenetic Analysis, 16S rRNA Gene, *Streptomyces*

I. INTRODUCTION

The borders of the city, which is 71 km away from Aydın, cover the coastal plain to the east and southeast of Kuşadası Bay and the low plateau behind it. The east and south are surrounded by mountains. Pigeon island area in front of the Bay and the low plateau behind it. The east and south are surrounded by mountains. Pigeon island area in front of the Bay.

The genus *Streptomyces* are Gram-positive aerobic members of the *Actinomycetales* order of the *Actinobacteria* class [3]. *Streptomyces* produces bioactive secondary metabolites, such as antifungals, antivirals, antitumorals and various antibiotics [4]. The majority of antibiotics used in medicine, veterinary practice and agriculture are derived from *Streptomyces* bacteria [5]. The genus *Streptomyces* includes more than 800 species with validly published names [6].

The study aims to carry out the isolation and phylogenetic analysis of *Streptomyces* sp. H2AK isolate obtained from the Kuşadası located near Aydın province.

II. MATERIALS AND METHOD

Isolation and maintenance of the organism

Streptomyces sp. H2AK, was isolated from a soil sample from Kuşadası located near Aydın province using a dilution plate on on Humic acid-vitamin agar [7] containing Cycloheximide (50 μg/ml) and Nalidixic acid (10 μg/ml).

The organism was maintained on related agar slopes and stocked in glycerol (20 %, v/v) at -20°C. 1 gram soil sample was added to 9 ml Ringer’s solution and then mixed for homogenization at room temperature. Then this 10³ dilution was kept for 15 minutes at 55 ° C in a preheated water bath. Serial dilutions (0.1 ml of 10⁻¹ to 10⁻⁷) were spread over the surface of dried related agar plates and the plates were incubated at 28°C for 14 days.

Cultivation and DNA extraction

Streptomyces sp. H2AK isolate was subcultured onto related medium and incubated for up to 2 weeks at 28°C. Suspensions of spores and mycelia were maintained in 20 % glycerol (w/v) at -20°C. Genomic DNA isolation was performed according to the Guanidine thiocyanate DNA isolation method [1].

16S rRNA gene sequence

PCR mixture (50 μl) included primers (20 μM), Taq polymerase buffer (HotStarTaq®) and deoxynucleoside triphosphates mixture (Promega) (25 μM). Taq polymerase (2.5 U, HotStarTaq®) and chromosomal DNA (50-300 ng) were added to the solution. The 16S rRNA gene was amplified with specific primers 27F and 1525R. The DNA thermal cycler was utilized for PCR amplification. The PCR conditions were initial denaturation at 95°C (5 min), 35 cycles at 95°C (1 min), 55°C (2 min), and 72°C (3 min), and a final extension at 72°C (10 min). Then the PCR product was resolved using electrophoresis in 1 % agarose gel (Merck) and was imaged with the Gene Genius Bioimaging system.
Phylogenetic analysis

The PCR product of the test isolate was purified with QIAquick purification kit (Qiagen). 16S rRNA gene sequence of the test isolate was revealed using an ABI PRISM 3730 XL automatic sequencer with previously mentioned oligonucleotide primers (Table 1). Chromatogram files in ABI format are converted to FASTA format using Chromas 1.7.5. The determination of phylogenetic neighbors and computation of pairwise 16S rRNA gene sequence similarity were obtained using the Ezbiocloud server (https://www.ezbiocloud.net) [8]. Multiple alignments with sequences from closely related species were applied with the program CLUSTAL W in MEGA 7.0 [9]. Phylogenetic trees were formed with the neighbor-joining [10], maximum likelihood [11] and maximum parsimony [12] algorithms in MEGA 7.0 [9]. Evolutionary distances were computed with the model of Jukes and Cantor [13]. Topologies of the resultant trees were determined with bootstrap analyses [14] based on 1000 resamplings.

Table 1. Oligonucleotide primers employed for 16S rRNA PCR amplification and sequencing

<table>
<thead>
<tr>
<th>Primer Code</th>
<th>Sequences (5’-3’)</th>
<th>Length</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>27F</td>
<td>AGAGTTTGATCMTGGCTCAG</td>
<td>20</td>
<td>[15]</td>
</tr>
<tr>
<td>518F</td>
<td>CCAGCAAGCCGGTTAAT</td>
<td>17</td>
<td>[16]</td>
</tr>
<tr>
<td>800R</td>
<td>TACCGGTATCTTAACGC</td>
<td>18</td>
<td>[17]</td>
</tr>
<tr>
<td>MG5F</td>
<td>AAACCTAAGGAAATCAGC</td>
<td>20</td>
<td>[17]</td>
</tr>
<tr>
<td>MG6F</td>
<td>GACGTCAGTATCTATGCC</td>
<td>19</td>
<td>[17]</td>
</tr>
<tr>
<td>1525R</td>
<td>AAGGAGGCTGTCCARCC</td>
<td>17</td>
<td>[15]</td>
</tr>
</tbody>
</table>

M = A:S; R = A:G; W = A:T.

III. RESULTS

Streptomyces sp. H2AK, was isolated on Humic acid-vitamin agar [7] with Cycloheximide (50 µg/ml) and Nalidixic acid (10 µg/ml) and then incubated at 28°C for about 14 days (Figure 1).

Figure 1. Isolation of a soil sample obtained from Kuşadası located near Aydın province on Humic acid-vitamin agar [7].

Streptomyces sp. H2AK isolate was obtained from a soil sample from Kuşadası located near Aydın province. 16S rRNA gene sequence of strain was detected with oligonucleotide primers (Figure 2).

The phylogenetic trees, according to the neighbor-joining, maximum parsimony and maximum likelihood algorithms indicated that the strain was member of the genus Streptomyces (Figures 3, 4 and 5).

Figure 2. Amplification product of the 16S rRNA gene region of H2AK isolate M, DNA Marker (Sigma, 50 bp DNA Ladder).

Figure 3. Neighbor-joining tree [10] based on 16S rRNA gene sequences showing the position of isolated H2AK strain among its phylogenetic neighbors. Numbers at the nodes demonstrate the levels of bootstrap support (%); only values ≥ 50% are shown. Genbank accession numbers are placed in parentheses. Bar, 0.01 substitutions per site.
In conclusion, isolation and phylogenetic analysis of Streptomyces sp. H2AK obtained from Kuşadası were performed. According to the polyphasic characterization approach, in addition to the phylogenetic analysis of the 16S rRNA gene region, DNA-DNA hybridization studies, whole-genome analysis, phenotypic and chemotaxonomic analyses should be performed.

In subsequent studies, it is possible to make Streptomyces sp. H2AK obtained in this study as a new species in the literature by making the relevant analyzes.

ACKNOWLEDGMENT
This study was supported by Hitit University (ODMYO19003.18.001). I want to extend our gratitude to Prof. Dr. Nevzat Şahin (Faculty of Art and Science, Department of Molecular Biology and Genetics, Ondokuz Mayis University) for his contributions to the study.

REFERENCES