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Abstract – Classical approximation theory has started with the proof of Weierstrass approximation theorem and after that 

Korovkin [Linear operators and approximation theory, Hindustan Publ. Corp, Delhi, 1960] first established the necessary and 

sufficient conditions for uniform convergence of a sequence of positive linear operators to a function f . In classical Korovkin 

theorem, most of the classical operators tend to converge to the value of the function being approximated. Also, the attention of 

researchers has been attracted to the notion of statistical convergence because of the fact that it is stronger than the classical 

convergence method. Furthermore, the concept of equi-statistical convergence is more general than the statistical uniform 

convergence. In this work, we introduce our new convergence method named equi-statistical relative convergence to 

demonstrate a Korovkin type approximation theorems which were proven by earlier authors. Then, we present an example in 

support of our definition and result presented in this paper. Finally, we compute the rate of the convergence.   

 

Keywords – Korovkin Theorem, Modular Spaces, Statistical Equal Convergence 

 

I. INTRODUCTION AND PRELIMINARIES 

Attention of researchers has been attracted to statistical 

convergence ([1, 2]) because of the fact that it is stronger 

than the classical convergence. Furthermore, the concept of 

equi-statistical convergence ([3]) is more general than 

statistical uniform convergence. Recently, Demirci and 

Orhan ([4]) define a new type of statistical convergence by 

using the notions of the natural density ([5]) and the relative 

uniform convergence ([6, 7]). The main purpose of the 

present paper is using these toughts for defining equi-

statistical relative convergence and using this convergence 

method to prove a Korovkin type theorem and also, giving 

equi-statistical relative rates. 

Now, we observe that the space  C X  of all continuous 

real-valued functions defined on a compact subset X  of real 

numbers is also a Banach space. For  f C X , we have 

 
 : sup

C X
t X

f f t


  . 

Let f  and rf  (for r  ) belong to  C X . 

Definition 1.1. ([8])  rf  is said to be pointwise 

statistically convergent to f  on X  if for every 0   and 

for each t X , 

 ,
lim 0

r

r

t

r






  

where       , : :r kt k r f t f t      . In this 

case we write ( )rf f st  on X . 

Definition 1.2. ([8])  rf  is said to be uniform 

statistically convergent to f  on X  if for every 0  , 

 
lim 0

r

r r

 


 , 

where  
  : :r k C X

k r f f      . In this case 

we write ( )rf f st  on X .  

of equiconcepttheremindweNow, -statistical 

convergence given by Balcerzak et al. [3]: 

Definition 1.3. ([3])  rf  is said to be equi-statistically 

convergent to f  on X  if for every 0   , 

 ,
lim 0

r

r

t

r






 , uniformly with respect to t X . In 

this case we write ( )rf f equi st   on X . 

Using the above definitions, the following result given by 

Balcerzak et al. [3]; 

Lemma 1.1. ([3]) rf f  on X  implies ( )rf f st  

on X , which also implies ( )rf f equi st   on X . 

Now we give the Demirci and Orhan's definition 

mentioned above. 

Definition 1.4. ([4])  rf  is said to be statistically 

relatively uniform convergent to f  on X  if there exists a 

function  t , called skale function,   0t  , such that,  

for every 0  , 

 
lim 0

r

r r






 , 

where  
 

: : k
r

C X

f f
k r 



  
    

  

This.

limit denoted by  ( ) ;rf f st X  . This limit is denoted 

by    ;rf f st X  . 
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Now, we introduce the concept of the equi-statistical 

relative convergence of sequences of functions with the help 

of the Definition 1.3 and Definition 1.4. 

Definition 1.5.  rf  is said to be equi-statistically 

relatively convergent to f  on X  if there exists a function 

 t , called skale function,   0t  , such that,  for 

every 0  , 

 ,
lim 0

r

r

t

r

 


 , uniformly with respect to t X , 

where  
   

 
, : :

k

r

f t f t
t k r

t
  



  
   
  

. In 

this case we write  ( ) ;rf f equi st X   . 

Remark 1.1. It will be observed that equi-statistical 

convergence is the special case of equi-statistical relative 

convergence in which the scale function is a non-zero 

constant. 

Now, we give the following example which is an equi-

statistically relatively convergent but not statistically uniform 

(or uniform) convergent. 

Example 1.1. Let  0,1X   and g  is a function by 

  0g t    for  0,1t . For each r , define 

 0,1rg C  by 

(1.1)   

1

1

1

1 1

1 3
2 2, ,

2 2

3 1
2 4, ,

2 2

0, .

r

r r

r

r r r

t t

g t t t

otherwise







 


  




    





 

Take   defined by  
1, 0,

: 1
0 1.

,

t

t
t

t






 
 



 Thus, 

clearly, 

   

 

1 2

1

1 2

1 1

1 3
2 2 , ,

2 2

3 1
2 4 , ,

2 2

0, .

r

r r

r r

r r

t t t

g t g t
t t t

t

otherwise









 


  


 

    





 

Then observe that   0( ) 0,1 ;rg g equi st    , 

however, since 
 

   
0,1

sup 1r
t

g t g t


  ,  rg  is not 

statistically (or ordinary) uniform convergent to 0.g   

II. KOROVKIN THEOREM VIA EQUI-STATISTICAL RELATIVE 

CONVERGENCE 

Korovkin-type approximation has been widely studied in 

the literature ([9]). The Korovkin-type approximation 

theorem for sequences of positive linear operators defined on 

 ,C a b  has been proved via the concept of statistical 

convergence in [10]. In this section, we give a Korovkin-type 

theorem for sequences of positive linear operators defined on 

 C X  using the concept of equi-statistical relative 

convergence.   

Let L  be a linear operator from  C X  into itself. Then, 

as usual, we say that L  is positive linear operator provided 

that 0f   implies   0L f  . Also, we denote the value of 

 L f  at a point t X  by   ;L f u t  or, briefly 

 ;L f t . 

Theorem 2.1. Let  rL be a sequence of positive linear 

operators acting  C X  into  C X . Then, we have 

(2.1)         ( ) ;rL f f equi st X    

if and only if  

(2.2)        ( ) ;r i i iL e e equi st X   , 0,1,2,i   

where   i

ie t t , 0,1,2,i     0: 0,1,2,i t i    

and     : max : 0,1, 2 .it t i    

Proof. Since each of the functions given by  

  i

ie t t , 0,1,2,i   

belong to  C X , the implication (2.1)   (2.2) are quite 

obvious. Before to complete the proof of Theorem 2.1, we 

assume that (2.2) are hold. Let f  belong to  C X  and 

t X  fixed. Then there exists a constant 0   such that 

for every t X , 

 f t   

which ensure that 

    2f u f t   . 

From the continuity of f , for a given 0  , there exists 

0   such that  

(2.3)       f u f t    whenever u t    

for every ,u t X . Now let us select 

   
2

,u t u t   . 

If u t   , ,u t X , we get 

(2.4)         2

2
,f u f t u t





  . 

From (2.3) and (2.4), we obtain 

     2

2
,f u f t u t


 


    

i.e. 

(2.5)

       2 2

2 2
, ,u t f u f t u t

 
   

 
      . 

Since the positive linear operator  1;rL t  is monotone, 

by applying this operator to the inequality in (2.5), we have 
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(2.6)   

          

   

2

2

2
1; , 1;

2
                                        1; , .

r r

r

L t u t L t f u f t

L t u t


 




 



 
    
 

 
  

 
Then, we obtain  

(2.7) 

          

    

2

2

2
1; , ; ; 1;

2
                                        1; , ; .

r r r r

r r

L t L u t t L f t f t L t

L t L u t t


 




 



   

 

Since 

(2.8) 
         

   

; ; 1;

                           + 1; 1 ,

r r r

r

L f t f t L f t f t L t

f t L t

    

  

 

we apply the equality (2.8) in (2.7) , 

(2.9)   

        

   

2

2
; 1; , ;

                           + 1; 1 .

r r r

r

L f t f t L t L u t t

f t L t


 


  

  

 

Now we calculate the term of "   , ;rL u t t " then we 

write 

(2.10) 

     
 

     

   

 

2

2 2

2 2

2 2

2

, ; ;

                    2 ;

                    ; 2 ; 1;

                    ; 2 ;

                        1; 1 .

r r

r

r r r

r r

r

L u t t L u t t

L u tu t t

L u t tL u t t L t

L u t t t L u t t

t L t

  

  

  

       

   

 

By using (2.10), we write the following inequality, 

        

   
  

2 2

2

2

; 1; 1

2
                 ; 2 ;

                        1; 1 .  

r r

r r

r

L f t f t f t L t

L u t t t L u t t

t L t

 





      

       

   

Since 0   is arbitrary, we can write 

     

    2 2

; 1; 1

                            ; ;

r r

r r

L f t f t F L t

L u t t L u t t

  

   
 

where 
2 12 2 2

2 4 2
: max , ,F e e

  
 

  

 
   

 
. Let 

    : max : 0,1, 2it t i    and  

  0: 0,1,2i t i   . Hence we get 

   

 

   

 

   

 

   

 

0 0

0

1 1 2 2

1 2

; ;

; ;
                  

r r

r r

L f t f t L e t e t
F

t t

L e t e t L e t e t

t t

 

 

 
 



  
  


 

Now, for a given ' 0  , define the following sets: 

 
   

 

;
, ' : : '

k

r

L f t f t
t k r

t
  



  
   
  

  

and 

(2.11) 

   

 
,

;' '
, : :
3 3

k i i

i r

i

L e t e t
t k r

F t F

 




   
    

    

, 

( 0,1,2i  ). It is easy to see that 

 
  ,2

0

'
,

, ' 3
i r

r

i

t
t F

r r




 



 
 
 

 . Then using the 

hypothesis (2.2) and considering Definition 1.5, the right 

hand side of (2.11) tend to zero as r  . The proof is 

completed. 

III. APPLICATION 

Let  0,1X  . Consider the following the Meyer-König 

and Zeller polynomials introduced by W. Meyer-König and 

K. Zeller [11]: 

   
1

0

; 1
rk

r

k

r kk
M f t f t t

kr k






  
   

  
 , 

 0,1f C . It is known that 

   ;r i iM e t e t , 0,1i   

       
 

2 2 2

1
; ,

1
r r

t t
M e t e t t e t

r



   


 

where    
 

 
1

1

1 !
1 .

1 ! ! 1

k
r

r

k

r k t
t t t

r k r k







 
 

  
  

Using the polynomial,    : 0,1 0,1rD C C  be a 

sequence of operators defined as follows: 

(3.1)       ; 1 ;r r rD f t g t M f t  ,  0,1t  and 

 0,1f C , where  rg t  given by (1.1) in Example 1.1. 

Then, we see that 

      0 0; 1 ,r rD e t g t e t   

      1 1; 1 ,r rD e t g t e t   

      
 

2 2

1
; 1 .

1
r r

t t
D e t g t e t

r

 
   

 
 

Since  

  0( ) 0,1 ;rg g equi st    , 

we conclude that 

    ( ) 0,1 ;r i iD e e equi st    for each 0,1,2i  . 

So, by Theorem 2.1, we have 
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    ( ) 0,1 ;rD f f equi st   . 

Furthermore, since the sequence  rg of functions on 

 0,1  is not statistically (or ordinary) uniform convergent to 

the function 0g   on the interval  0,1 ; we can say that 

the results given in [10] and [9], respectively, do not hold true 

for our operators defined by (3.1). 

IV. RATE OF THE EQUI-STATISTICAL RELATIVE CONVERGENCE 

In this section, we compute the rate of equi-statistical 

relative convergence with the help of modulus of continuity. 

Now, we recall that the modulus of continuity of a function 

 f C X  is denoted by  ;f  , is defined to be 

     
, ,

; sup
u t t u X

f f u f t


 
  

   ( 0  ). 

It is also well known that for any 0   and each 

,u t X  

     ; 1
u t

f u f t f 


  
   

 

. 

Now, we state and prove the following theorem. 

Theorem 4.1. Let  rL be a sequence of positive linear 

operators acting  C X  into  C X . Assume that the 

following conditions hold: 

(i)    0 0 0( ) ;rL e e equi st X   , 

(ii)    1; 0( ) ;rf equi st X    , where  

   ;r r tt L t   with    
2

t u u t   . 

Then we have, for all  f C X , 

(4.1)             ( ) ;rL f f equi st X    

where   0 : 0,1i t i    and 

           0 1 0 1: max , , .t t t t t      

Proof. Let  f C X  and t X . It is known that 

([12], [13]),  

       

      

0 0

0 0

; ;

                   ; ; ;

r r

r r r
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 
  

where 
 

:
C X

f  . Then, we obtain  
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                   ; ; .
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 

 

   

 

 

This yields that 

   

 

   

 

 

 

   

 
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; ; ;
2

; ;
                   

; ;
                   .
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r r
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t t t
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t t
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 


  

 

 

 

 

 
 





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Now, considering the above inequality, the hypotheses (i) and 

(ii), proof is completed at once. 
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