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Abstract – In this paper, a structural-output is obtained to estimate 3D human pose using 3D human point cloud and monocular 
images. The Neural Network takes a human image and 3D pose as inputs and gives outputs a score value. Conditional Random 
Field (CRF) approach is using to semantically classify human limbs in its point cloud for 3D human pose production. The voxel 
cloud connectivity segmentation (VCCS) is used as the segmentation method that voxelisation of the 3D point cloud. The 
network structure consists of a convolutional neural network for image feature extraction and pose into a joint embedding. The 
score function is calculation from the dot-product between the images and pose embeddings which is high when the image-pose 
pair matches and low otherwise. Image-pose embedding and score function are jointly trained using the max-margin cost 
function. Finally we present visualizations of the image-position placement field, showing that the network has learned a high 
level embedding of body orientation and pose configuration.
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I. INTRODUCTION

The human pose estimation, which has been in the works for 
decades, it has been the scene of different work in the past few 
years. These studies are influenced by industrial camera 
capabilities. In particular, having knowledge of human skeletal 
joints facilitates pose estimation in many studies. Due to the 
dependencies among the joint points, it can be considered as a 
structured-output task. In general, two different approaches 
can be taken to estimate human pose:

The first of these prediction-based methods; the second is 
optimization-based methods. The approach of the first method 
is to address the problem of regression or detection in human 
pose estimation [1]–[4]. The goal of the method is to learn the 
matching 2D or 3D joint points on the target with the image 
features from the input space or classifiers to identify certain 
body parts in the image. Such methods are usually simple and 
work fast during the evaluation phase. Toshev et al. have set 
up a cascaded network to refine 2D joints locations at the 
image level [2]. However, this approach does not explicitly 
consider the structured constraints of human pose. Inference 
studies on 2D joint positions included joint predictions of the 
relationship between them [4, 5]. Constraints of prediction-
based methods include: the manually designed constraints may 
not exactly match the dependencies between the body joints 
points; poor scalability to 3D joint estimation when the search 
space needs to be discretized; only single pose can be predicted 
in situations where multiple poses may be valid due to partial 
self-occlusion.

The second approach is learning a score function instead of 
directly estimating the target, which takes both an image and a 
pose as input, and produces a high score for the matched pair 
of correct images and poses and low scores for unmatched 
image-pose pairs. Given an input image x, the estimated pose 
y∗ is the pose that maximizes the score function.

�∗ � arg max
� ∊ ƴ

���, ��, (1)

where ƴ is the pose space, if the score function can be 
normalized properly, then it can be interpreted as a probability 
distribution, either a conditional distribution of poses given the 
image, or a joint distribution over both images and joints.

One of the different popular approaches use pictorial 
constructions [6]. Accordingly, dependencies between joints 
are represented by edges in a probabilistic graphical model [7].
The structured output SVM is an alternative to the generative 
models [8], which is a distinctive way to learn the score 
function. This method ensures a large margin between the 
score values for correct input pairs and for incorrect input pairs 
[9, 10].

As a score function is treated both image and pose as input 
there are various methods for presenting the information 
together with the source of the image and pose, e.g., the image 
features extracted around the input joint positions could be 
viewed as the joint feature representation of image and pose 
[11, 12]. Alternatively, the features in the image and the 
features in the pose can be extracted separately and then 
combined. The score function can be trained to combine those
together [13]. However, in studies that follow all these 
methods, features are handcrafted and system performance is 
largely depends on the quality of the features. From the other 
side, it is shown to be more efficient in extracting informative 
high-level features of deep neural networks [14].

In this paper, we propose a framework for structured 
learning with deep neural networks for 3D human pose 
estimation. Our presented framework jointly learns the image 
and pose feature representations and produce a score function. 
In particular, our network first extracts separate feature 
embeddings from the image input and from the 3D pose input. 
Point cloud data is used for 3D human pose input. Generation 
of human 3D pose estimation will be performed with 3D point 
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cloud segmentation Conditional Random Fields (CRF). 
Human3.6m and i3Dpost datasets are used for matching of 
monocular images and 3D human pose as well as real human 
3D point cloud to be produced with the Kinect sensor camera. 
The score function is then the dot-product between the image
and pose embeddings, which is efficient to compute. The score 
function and feature embeddings are trained using a 
maximum-margin criteria, resulting in a discriminative joint-
embedding of image and 3D pose.

II. MATERIALS AND METHOD

Human body part segmentation is one important focus in 
pose estimation. Segmentation is the process of splitting the 
image into multiple regions by extracting the object from a 
background. In this section segmentation is being performed 
over the point cloud for 3D pose estimation. A segmentation 
method is presented for semantic human point cloud 
classification to the body parts as seen in Fig. 1. The first 
output of this phase is a 3D point cloud that will be 
semantically categorized into body parts. Our aim is to classify 
the 3D human point cloud and assign one label for each piece 
of the joint part. The normal and curvature features of the point 
cloud points are used for this purpose.

Fig. 1  Point cloud, segmented point cloud, and skeleton extraction of points

A. 3D Pose Extraction

CRF is a graphical-based method that is often used in 
partitioning studies. In this study, a simplified CRF extraction 
is used to best divide the 3D point cloud data. The inference is 
the average field approach in the CRF graph. Graph nodes are 
supervoxel from the past step. Computation of the output with 
a fully connected CRF model has a large computational 
complexity with many nodes in the original point cloud. For 
this reason, the CRF graph is defined on overly divided regions 
originating from the past step.  As such, by replacing the 
supervoxel with singular point cloud as graph nodes, the 
number of graph nodes and the computational complexity of 
inference reduce.

In the proposed method by constructing the graph with 
every supervoxel in its nodes, pair wise potentials are some of 
Gaussian kernels as shape, appearance, smoothness and also 
the geodesic distance between each node [15]. The mesh 
between the nodes is calculated for the calculation of the 
geodetic distance. Poisson surface reconstruction is used to 
calculate the mesh between each supervoxel with the PCL 
library. Dijkstra's shortest path algorithm [16] is used to 
calculate the geodetic distance between nodes. The open 
source implementation of the Dijkstra algorithm is used as part 
of the C library [17].

The CRF model has both single and pairwise potentials 
defined for the 3D human point cloud. The single potentials 
should best be calculated using point features, and a 

probability must already be defined on the label assignments 
for each point.

In general for a fully dependent CRF model;

���� � ∑ ������� + ∑ �����, ����<� (2)

The pairwise edge potential �����, ��� is defined as a linear 

combination of Gaussian kernels �����, ��� [18].

The algorithm used to estimate the inference function is the 
backward message passing method. The algorithm is given as 
follow;

Algorithm 1. Mean field in fully connected CRFs [19].
Initialize Q

������ �
1

��
exp {−������}

While not converged do;
Message passing from all �� to all ��.

�̃�
���

��� ← ∑ �������, ���������≠� for all m

Compatibility conversion

������� ← ∑ �����, ���∊� ∑ ���̃�
���

����

Local update;

������ ← exp {−������ − �������}
Normalize ������
End while

According to algorithm, compatibility conversion and local 
update work in a fairly efficient manner within a linear time. 
But, the message passing step for each variable, requires a 
more computational complexity. Since evaluating a sum over 
all other variables has a quadratic complexity in the number of 
variables N. High-dimensional filtering can be used to reduce 
the computational cost of message passing from quadratic to 
linear [20].

B. Image Feature Extraction

The aim of the image extraction subnetwork is to transform 
the raw input image into a more compact representation with 
the pose information preserved. In proposed method we use a 
deep CNN which is consisting of 3 sets of convolution and 
max-pooling layers, to extract image features from the image.
The rectified linear units (ReLU) [21] are using as the 
activation function in the first 2 layers, and the linear activation 
function in the 3rd layer.

����� ��� is defined as a feature maps. The output of the 
pooling layers is a set of these feature maps, where j is the layer 
number. Fig. 2 shows detailed information about feature map 
and convolutional filter sizes. Each feature in the map has a 
receptive field in the input image, with higher layer features 
having larger receptive fields. Intuitively, higher-layer features 
contain general information about the pose. This will be useful 
for distinguishing between different poses. Also, lower-layer 
properties, contain more detailed information about the pose 
that will help distinguish similar poses.

C. Image-Pose Embedding

Since the image and pose are in different spaces, a common 
area is needed. The image-pose embedding sub-network is to 
reflect the intended image features and the 3D pose where they 
can be compared effectively. Fig. 2 shows the basic 
architecture of the image and pose embedding network. We 
inspired from Sun, and Li et al., both middle and upper layers 
of convolution were used [22, 3].
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Fig. 2 Flow diagram of deep-network score function. Image input is fed over a set of convolution layers to extract image features. Two separate sub-networks 
are used to embed the image and pose in a common area, and the score function is the dot product between the two embeddings. An auxiliary 3D body-joint 
prediction process is performed which will help to network to find a good image features. Unscratched max-pooling layer follows the each convolution layer to 
reduce clutter

The middle and top layer features are passed through each 
independent fully connected layers and then they are joined 
together. It is passed over two more fully connected layers to 
obtain the embedding image fI (x).

����� � ℎ4 �ℎ3 �[
ℎ1�����2����

ℎ2�����3����
]��, (3)

where the activation function ℎ���� � �������
�� + ��� is a 

rectified linear unit with weight matrix Wi and bias bi.
The input pose y is represented by the 3D coordinates of 

body-joint locations. Dimensions are strongly related to 
dependencies between joints. The pose is matched as a non-
linear embedding so that it can be more easily combined with 
the image embedding. 2 completely connected layers are used 
for this transformation.

����� � ℎ6(ℎ5���). (4)

D. Score Prediction

The score function fS (x, y) is represented between the image 
and the pose inputs  as the inner product between the image 
embedding fI (x) and the pose embedding fJ (y). i.e.;

����, �� � 〈�����, �����〉. (5)

The advantage of inner-product is used to facilitate 
alignment between the two embeddings. This allows direct 
interaction of the corresponding dimensions of the image and 
the pose embedding vectors. Another advantage of the method 
is that the calculation yields very effective results. Pose 
calculation works independently of image features. This 
means that the candidate pose can be computed offline when 
the pose is stabilized.

In network training, the image and pose are matched to 
similar embedding spaces that their dot-product similarity 
serves as an appropriate score function. This situation can be 
loosely expressed as learning a multi-view “kernel” function, 
where the “high-dimensional” feature space is the learned joint 
embedding. At the same time the score function can be 
interpreted as the linear combination of the multiple pose-
score function. Each dimension of the pose embedding 
corresponds to a pose-score function, which indicates how 

well the input pose belongs to a specific pose subspace (i.e.; 
poses facing the camera).

The calculation of linear combination weights is decided by 
image-feature embedding, which controls which pose-
subspaces are to be well matched by the input pose.

E. Maximum Margin Cost

Structured SVM is used to calculate the maximum margin 
cost function to learn the score function [23]. The maximum 
margin cost calculation ensures that the difference between the 
scores of the two input pairs has at least a particular value 
(margin). Unlike known standard SVMs, the structured-SVM 
may have a margin that changes values based on the 
dissimilarity between the two input pairs. In addition, a margin 
that recalculates the rescaling role is used, similar to the 
structured-SVM,

ℒ���, �, �̂� � max �0, ����, �̂� +△ ��̂, �� − ����, ���. (6)

where ��, �� is a training image-pose pair, △ ��̂, �� is a 
nonnegative margin function between two poses, and max (a, 
b) returns the maximum value of a and b. In other words, max
(0, x) is a rectified linear function. �̂ is the pose that most
violates the margin constraint. �̂ depends on the input (x, y) 
and network parameters θ to reduce clutter, we write �̂ instead 
of �̂ (x, y, θ) when no confusion arises.

�̂ � arg max
� ∊ ƴ

����, ��� +△ ��, ��� − ����, �� (7)

� arg max
� ∊ ƴ

����, ��� +△ ��, ���

Intuitively, a pose with a high predicted score, but that is far 
from the ground-truth pose, is more likely to be the most 
violated pose [24]. Here we use the mean per joint position 
error for the margin function, (MPJPE), i.e.;

△ ��, ��� �
1

�
∑ �(��,  �′�)�

�
�=1 (8)

where �� indicates the 3D coordinates of j’th joint in pose y, 

and J is the number of body-joints. When the loss function in 
(6) is zero, then the score of the ground-truth image-pose pair 
��, �� is at least larger than the margin for all other image-pose 
pairs ��, ���;
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Fig. 3 Network structure for calculating the most violated pose. For a given 
image, the score values are predicted for a set of candidate poses. The re-
scaling margin values are added, and the largest value is selected as the most-
violated pose. Thick arrows represent an array of outputs, with each entry 
corresponding to one candidate pose

����, �� ≥ ����, ��� +△ ���, ��, ∀�′ ∊  ƴ.           (9)

On the other hand, if (6) is greater than 0, then there exists 
at least one pose �� whose score ���, ��� violates the margin. 
Using maximum-margin training, our score function can be 
interpreted as a SSVM, where the joint features are the 
element-wise product between the learned image and pose 
embeddings, 

�′���, �� � 〈�, ����� о �����〉. (10)

where о indicates element-wise multiplication, and w is the 
SSVM weight vector. The equivalence is seen by noting that 
during network training the weights w can be absorbed into the 
embedding functions {��, ��}. In our framework, these 

embedding functions are discriminatively trained.

F. Multi-task Global Cost Function

A training task system has been added to help of predicting 
the 3D pose what the 3D pose is to encourage the embedding 
of the scene in support of more pose information.

����� � �7�ℎ3�, (11)

where ℎ3 is the output of the penultimate layer of the image 
embedding, and ����� � tanh���

�� + ��� is the tanh 
activation function. The cost function for the pose prediction 
task is the square difference between the ground-truth pose and 
predicted pose,

ℒ���, �� � ‖����� − �‖2. (12)

Finally, given a training set of image-pose pairs

{�����, �����}�=1
� , our global cost function consists of the 

structured maximum-margin cost, pose estimation cost, as 
well as a regularization term on the weight matrices.

������� �
1

�
∑ ℒ�(����, ����, �̂���) +�

�=1

  
1

�
� ∑ ℒ�(����, ����) +�

�=1 � ∑ ����
�

27
�=1 (13)

where i is the index for training samples, λ is the weighting for 
pose prediction error, γ is the regularization parameter, and 
� � {���, ���}�=1

7 are the network parameters. Note that 
gradients from ℒ� only affect the CNN and high-level image 
features (FC1-FC3), and have no direct effect on the pose 

Fig. 4 Network structure for maximum-margin training. Given the most-
violated pose, the margin cost and pose prediction cost are calculated, and the 
gradients are passed back through the network

embedding network or image embedding layer (FC4). 
Therefore, we can view the pose prediction cost as a 
regularization term for the image features. Fig. 3 and Fig. 4 
show the overall network structure for calculating the max-
margin cost function, as well as finding the most violated pose.

G. Maximum-Margin Network Training 

Stochastic gradient descent (SGD) is used to train the 
network. The system is similar to the SSVM procedure, as the 
most-violated pose finding (8), and the minimizing the cost 
function (13) is to update the network parameters that reduce 
the cost. The procedure is;

1- Find the most-violated pose �̂ for each training pair (x, y) 
with the current network parameters using the pose selection 
network, Fig. 3.

2- Input into maximum margin into the training network 
��, �, �̂� and run the back rule to update the parameters Fig. 4.

The tuple ��, �, �̂� values are introduced as extended 
training data. These training data is processed in mini-
partitions. It has been discovered that using the weighted 
average of the current gradient and previous updates, the use 
of momentum among the mini-partitions that update 
parameters always hinders convergence. The reason for this is 
that the maximum margin cost is to choose the different poses 
most violated in each partitions. It also ensures that the 
direction of change is rapidly changing among the partitions.

Score function calculation is effective, but scanning of all 
poses increases the calculation time to find the most-violated 
pose. Instead, a set of candidates ƴ� for each partitions are 
created and the most-violated poses in this set are searched.
Candidates consist of C poses sampled from the pose space ƴ.
During the training, it was seen that the same poses were 
determined more than once as the most-violated poses. For this 
reason, a study set consisting of the most-violated poses was 
created and the K most frequently used most-violated pose 
were added to the candidate set.

The simplest solution to estimate pose is to train the pose 
with the maximum image of the test image x.

�′ � arg max
� ∊ �

����, �� (14)

where T is the set of training poses. However, since the training 
and test sets contain different subjects, the poses in the training 
set will not perfectly match the subjects in the test set. Hence 
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to allow for more pose variation, we compute the average of 
the A training poses with highest scores,

�̅ �
1

�
∑ ������� ∊ �

��
�=1 ����, �� (15)

where argmaxi returns the pose with the i-th largest score. The 
motivation for averaging the top A poses is two-fold. First, 
averaging the poses with highest scores allows for 
interpolation of poses that are not in the training set are sshow 
in Fig. 5.

However, the average pose �̅ is not guaranteed to be a valid 
pose. To address this problem, we use the annealing particle 
filtering (APF).

�∗ � arg min
� ∊ ƴ

△ ��̅, �� (16)

Finally, we have obtained the relationship using the triangle 

inequality, ���� − �∗� ≤ ���� − �̅� + ‖�̅ − �∗‖.Therefore, 

minimizing △ ��̅, �∗� is equivalent to minimizing an upper 
bound of the MPJPE between the ground-truth pose ygt and the 
valid pose prediction y∗.

Fig. 5 Example of pose interpolation by averaging the top-scoring poses

III. RESULTS

In this section, the maximum margin structured learning 
network is evaluated for human pose estimation. Human3.6M 
dataset was used for evaluation which contains around 3.6 
million frames.

The input image is a cropped image around the human. The 
training images are re-sized by subtracting a square with the 
limiter provided by the Human3.6M data set. 112×112 sub-
images are randomly selected for local translations from the 
training images. 3D pose entries are obtained with the body 
joints coordinate transformation of the human point cloud. The 
3D pose input is a vector of the 3D coordinates of 17 joints.

The following inference methods are tested for pose 
estimation;

– Max: the training pose with maximum score in (14).
– Avg: the average of the top-500 training poses in (15), i.e., 

A = 500.
– Avg-APF: the valid pose after applying APFto the average 

pose in (16).
Table 1 shows the MPJPE results and the overall average in 

the test set for each action. Different estimation methods are 
compared for predicting pose. StructNet-Avg gives better 
results than StructNet-Max when all human action results are 
taken, and gives an overall reduction in error of about 10%.
Furthermore, applying APF to the average pose from 
StructNet-Avg yields a valid pose with roughly the same 
MPJPE as StructNet-Avg.

Table 1. Human3.6m results: is calculated by MPJPE (mm) and standard 
deviation with parentheses.

Action LinKDE
(BS) [13]

Dconv [1]
MPHML

StructNet-
Max

StructNet-
Avg

StructNet-
Avg-APF

Walking 97
(37.1)

77.6
(23.5)

82.4
(27.4)

68.5
(21.4)

67.3
(22.2)

Discussion 183
(116.7)

148.7
(100.4)

147.9
(108.9)

133.1
(110.0)

132.9
(112.8)

Eating 132.5
(72.5)

104 
(39.2)

108.7
(51.2)

97.9
(49.4)

96.1
(51.1)

Taking 
Photo

206.4
(112.6)

189
(93.9)

178.7
(93.5)

163.0
(90.6)

164.9
(92.9)

Walking 
Dog

177.8
(122.6)

146.6 
(75.9)

146.0
(85.6)

131.3
(85.9)

131.3
(87.3)

Greeting 162.3 
(88.4)

127.2 
(51.1)

135.5
(64.7)

121.2
(61.8)

121.1
(64.5)

All 162.2
(104.4)

133.5
(81.3)

134.4
(86.6)

120.2
(85.6)

120.1
(87.9)

IV. CONCLUSION

In this paper, we propose a structured learning framework 
with deep neural network for human 3D pose estimation. The 
framework takes single human image and 3D pose (obtaining 
from classified 3D point cloud) as inputs and outputs a score 
value that represents a multiview similarity between the two 
inputs (whether they depict the same pose).  The recurrent 
neural network takes both image-embedding and an initial 
pose as input and outputs a refined pose. The image and pose 
into a joint embedding, where the dot-product between the 
embeddings serves as the score function. The network using a 
max-margin cost function, which enforces a re-scaling margin 
between the score values of the ground-truth imagepose pair 
and other image-pose pairs. Finally, we demonstrade that the 
learned image-pose embedding encodes semantic attributes of 
the 3D pose, such as the orientation of the person and the 
position of the legs. Our proposed framework is general, and 
future work will consider applying it to other structured-output 
tasks. It is thought that the results obtained with the structural 
framework prepared by this study can be applied in future 
studies.

REFERENCES

[1] S. Li, and A. B. Chan, 3d human pose estimation from monocular 
images with deep convolutional neural network. In Asian Conference 
on Computer Vision, 2014, (pp. 332-347). 

[2] A. Toshev, and C. Szegedy, Deeppose: Human pose estimation via 
deep neural networks. In Proceedings of the IEEE Conference on 
Computer Vision and Pattern Recognition, 2014, (pp. 1653-1660). 

[3] S. Li, Z. Q. Liu, and A. B. Chan, Heterogeneous multi-task learning for 
human pose estimation with deep convolutional neural network. In 
Proceedings of the IEEE Conference on Computer Vision and Pattern 
Recognition Workshops, 2014, (pp. 482-489).

[4] J. J. Tompson, A. Jain, Y. LeCun, and C. Bregler, Joint training of a 
convolutional network and a graphical model for human pose 
estimation. In Advances in neural information processing systems, 
2014, (pp. 1799-1807). 

[5] A. Jain, J. Tompson, M. Andriluka, G. W. Taylor, and C. Bregler, 
Learning human pose estimation features with convolutional networks. 
2013, arXiv preprint arXiv:1312.7302. 

[6] P. F. Felzenszwalb, and D. P. Huttenlocher, Pictorial structures for 
object recognition. International journal of computer vision, 2005, 
61(1), 55-79. 

[7] D. Koller, and N. Friedman, Probabilistic graphical models: Principles 
and techniques. 2009, Cambridge: MIT Press.

[8] I. Tsochantaridis, T. Hofmann, T. Joachims, and Y. Altun, Support 
vector machine learning for interdependent and structured output 
spaces. 2004, In ICML

[9] J. A. Rodríguez, and F. Perronnin, Label embedding for text 
recognition. 2013, In BMVC

[10] C. Ionescu, L. Bo, and C. Sminchisescu, Structural SVM for visual 
localization and continuous state estimation. In ICCV 2009, (pp. 1157–
1164).

ISMSIT 2017 - PROCEEDINGS 308



Özbay et al., Structured Deep Learning Supported with Point Cloud for 3D Human Pose Estimation, ISMSIT 2017, Tokat, Turkey

[11] B. Sapp, and B. Taskar, Modec: Multimodal decomposablemodels for 
human pose estimation. In Proceedings of the IEEE conference on 
CVPR, 2013.

[12] Y. Yang, and D. Ramanan, Articulated pose estimation with flexible 
mixtures-of-parts. In CVPR, 2011, (pp. 1385 – 1392).

[13] C. Ionescu, D. Papava, V. Olaru, and C. Sminchisescu, Human3.6m: 
Large scale datasets and predictive methods for 3d human sensing in 
natural environments. IEEE TPAMI, 2014, 36(7), 1325–1339.

[14] Y. Bengio, G. Mesnil, Y. Dauphin, and S. Rifai, Better mixing via deep 
representations. In ICML, 2013, (pp. 552–560).

[15] S. E. Nasab, S. Kasaei, E. Sanaei, A. Ossia, and M. Mobini, Multiview 
3D reconstruction and human point cloud classification. 22nd Iranian 
Conference on Electrical Engineering (ICEE), 2014.

[16] “dijkstra algorithm.” [Online]. Available: 
http://en.wikipedia.org/wiki/Dijkstra’s_algorithm.

[17] “boost c++ library.” [Online]. Available: http://www.boost.org/.
[18] J. Nation, CRF Based Point Cloud Segmentation. 2011.
[19] P. Krähenbühl and V. Koltun, Efficient inference in fully connected crfs 

with gaussian edge potentials, arXiv preprint arXiv:1210.5644, no. 4, 
pp. 1–4, 2012.

[20] A. Adams, J. Baek, and M. A. Davis, Fast High‐Dimensional Filtering 
Using the Permutohedral Lattice. In Computer Graphics Forum 2010,
(Vol. 29, No. 2, pp. 753-762). 

[21] V. Nair, and G. E. Hinton, Rectified linear units improve restricted 
boltzmann machines. In Proceedings of the 27th international 
conference on machine learning 2010, (ICML-10) (pp. 807-814). 

[22] Y. Sun, X. Wang, and X. Tang, Deep learning face representation from 
predicting 10,000 classes. In Proceedings of the IEEE Conference on 
Computer Vision and Pattern Recognition 2014, (pp. 1891-1898). 

[23] I. Tsochantaridis, T. Joachims, T. Hofmann, and Y. Altun, Large 
margin methods for structured and interdependent output variables. 
Journal of Machine Learning Research, 2005, 6, 1453–1484.

[24] S. Li, W. Zhang, and A. B. Chan, Maximum-margin structured learning 
with deep networks for 3d human pose estimation. In Proceedings of 
the IEEE International Conference on Computer Vision, 2015, (pp. 
2848-2856). ISO 690

ISMSIT 2017 - PROCEEDINGS 309


