The Investigation of Magnetic Levitation Performance of Bis (2-methoxy- 4-allylphenyl) Oxalate (I) (C22H22O6) Doped MgB2 Bulk Superconductor
Burcu Savaşkan1*, Sait Barış Güner2, Günay Kantar3
1Karadeniz Technical University, Trabzon, Turkey
2Recep Tayyip Erdoğan University, Rize, Turkey
3Recep Tayyip Erdoğan University, Rize, Turkey
* Corresponding author: bsavaskan@ktu.edu.tr
Presented at the 2nd International Symposium on Innovative Approaches in Scientific Studies (ISAS2018-Winter), Samsun, Turkey, Nov 30, 2018
SETSCI Conference Proceedings, 2018, 3, Page (s): 754-759 , https://doi.org/
Published Date: 31 December 2018 | 1363 11
Abstract
In this work, the effects of bis (2-methoxy-4-allylphenyl) oxalate (I) on levitation (Fz) and lateral forces (Fx) of bulk
MgB2 superconductor has been investigated and reported for the first time. All samples were prepared from magnesium powder
(Mg, 99.8 %), amorphous boron powder (B, 98 %), and bis oxalate (C22H22O6) powder by using “Solid State Reaction Method”.
It is used as a dopant because it is a good candidate to be a carbon source material for doping MgB2. The amount of C22H22O6
was varied between 0 and 9 wt % (0, 1.5, 3.0, 4.5, 6.0 and 9.0 wt%) of the total MgB2 bulks. Vertical levitation and lateral force
measurements were carried out with both Zero-field-cooled (ZFC) and Field-cooled (FC) regimes at temperatures of 25 and 30
K. It was found that the bis oxalate adding has a positive impact on the levitation and guidance properties of MgB2 bulk. Based
on observed values of levitation and guidance force, it can be concluded the 3 wt% C22H22O6 added sample is the best of the
studied samples. This results of this study are useful for the practical application in Magnetic Levitation Devices.
Keywords - MgB2 superconductor, C22H22O6 adding, Vertical levitation force, Lateral force
References
[1] K. B. Ma, Y. V. Postrekhin and K. Chu, “Superconductor and magnet levitation devices”, American Institute of Physics, vol. 74, pp. 4989-4999, December 2013.
[2] H. Song, O. Haas, C. Beyer, G. Krabbes, P. Verges and L. Schultz, “Influence of the lateral movement on the levitation and guidance force in the high- temperature superconductor maglev system”, Applied Physics Letters, 86 192506, 2005.
[3] Y. Shi, A. Dennis, K. Huang, D. Zhou, J. H. Durell and D. A. Cardwell, “Advantages of multi-seeded (RE)_Ba-Cu-O superconductors for magnetic levitation applications”, Supercond. Sci.Technol., 31, 095008, 2018.
[4] A. Yamomoto, A. Ishihara, M. Tomita, K. Kishio, “Permanent Magnet with MgB2 bulk superconductor”, Appl Phys Lett, July 2014.
[5] T. Naito, T. Yoshida and H. Fujishiro, “Ti-doping effects on magnetic properties of dense MgB2 bulk superconductors”, Supercond. Sci. Technol., Vol. 28, 095009, 2015.
[6] B. Savaşkan, E. Taylan Koparan, S. B. Güner, Ş. Çelik, K. Öztürk and E. Yanmaz, “Effect of C4H6O5 Adding on the critical current density and Lateral Levitation Force of bulk MgB2” J Low Temp Phys, 181, 38-48, 2015.
[7] P. Mikheenko, E. Martinez, A. Bevan, J. S. Abell and J. L. MacManus-Driscoll, “Grain boundaries and pinning in bulk MgB2” Supercond. Sci. Technol., Vol. 20, S 264-270, 2007.
[8] T. Naito, T. Sasaki and H. Fujishiro, “Trapped magnetic field and vortex pinning properties of MgB2 superconducting bulk fabricated by a capsule method”, Supercond. Sci. Technol., 25, 095012, 2012.
[9] E. Taylan Koparan, B. Savaskan, E. Yanmaz, “Improving magnetic properties of MgB2 bulk superconductors by synthetic engine oil treatment”, Physica C, 527, 36-40, 2016.
[10] K. S. B. De Silva, X. Xu, W. X. Li, Y. Zhang, M. Rindfleisch and M. Tomsic, “Improving Superconducting Properties of MgB2 by Graphene Doping”, IEEE Transactions
on Applied Superconductivity, 21, 2686-2689, 2011.
[11] B. Savaskan, E. Taylan Koparan, S. Celik, K. Ozturk, E. Yanmaz, “Investigation on the levitation force behaviour of malic acid added bulk MgB2 superconductors” Physica C, 502, 63-69, 2014.
[12] A. G. Bhagurkar, A. Yamamoto, L. Wang, M. Xia, A. R. Dennis, J. H. Durell, T. A. Alijohani, N. H. Babu, D. A. Cardwell, “High Trapped Fields in C-doped MgB2 Bulk
Superconductors Fabricated by Infiltration and growth process”, Nature, DOI: 10. 1038/s41598-018-31416-3, August 2018.
[13] B. Savaskan, E.T. Koparan, S.B. Güner, S. Celik, E. Yanmaz, “The size effect on the magnetic levitation force of MgB2 bulk superconductors”, Cryogenics, 80, 108-114, 2016.
[14] K. Ozturk, M. Kabaer, M. Abdioğlu, “ Effect of onboard PM position on the magnetic force and stiffness performance of multi-seeded of YBCO”, Journal of Alloy and Compounds, 644, 267-273, 2015.
[15] S. Celik, “Design of magnetic levitation force measurement system at any low temperatures from 20 K to room temperatures”, Journal of Alloy and Compounds, 662, 546-556, 2017.
[16] O. Erdem, M. Abdioğlu, S. B. Güner, S. Guner, S. Celik, T. Kucukomeroğlu, “Improvement in levitation force performance of bulk MgB2 superconductors through coronene powder adding”, ”, Journal of Alloy and Compounds, 727, 1213-1220, 2017.
[17] W. Liu, J. S. Wang, G. T. Ma, J.Zheng, X. G. Tuo, L. L: Li, C. Q. Ye, X. Liao, S. Y. Wang, “Influence of lateral displacement on the levitation performance of a magnetized bulk high-Tc superconductor magnet”. Phys. C, 474, 5–12 2012.
[18] J. R. Hull, A. Cansz, “Vertical and lateral forces between a PM and a high-temperature superconductor”, J. Appl. Phys., 86, 6396–6404, 1999.
[19] Z. S. Sahin, G. Kaya Kantar, S. Sasmaz, O. Büyükgüngor, “Theoretical and experimental investigations on molecular structure of bis (2- methoxy-4- allylphenyl) oxalate”, Journal of Molecular Structure, 1103, 156-165, 2016.