Open Access

Synthesis, Characterization of The Novel Carbazole Core Structures and Investigations of Photodiode Properties

Müjdat Çağlar1*, Kamuran Görgün2, Merve Yandımoğlu3
1Eskişehir Technical University, Eskişehir, Turkey
2Osmangazi University, Eskişehir, Turkey
3Osmangazi University, Eskişehir, Turkey
* Corresponding author: mujdatcaglar@gmail.com

Presented at the 2nd International Symposium on Innovative Approaches in Scientific Studies (ISAS2018-Winter), Samsun, Turkey, Nov 30, 2018

SETSCI Conference Proceedings, 2018, 3, Page (s): 760-763

Published Date: 31 December 2018

Palladium-catalyzed Suzuki Miyaura cross coupling reactions (SM Coupling) are made using organoboronic acid and halides. 9-(4-anthracene-9-yl-phenyl)-9H-carbazole (III) was synthesized by using Ullman and Suzuki coupling reactions. Structural analysis of the 9-(4-anthracene-9-yl-phenyl)-9H-carbazole (III) compounds obtained by this method has been elucidated by 1H-NMR. This compound was dissolved by chloroform and the borosilicate glass was coated with drop casting method. Transmittance measurement of this film was taken and optical band value was determined. The heterojunction structure (n-Si/III) was fabricated by using the obtained compounds. The electrical properties of the fabricated photodiode were investigated.  

Keywords - Carbazole, Suzuki-Miyaura Coupling, Ullman Coupling, photodiodes

[1] S. Kotowicz, M. Siwy, M. Filapek, J. G. Malecki, K. Smolarek, J. Grzelak, S. Mackowski, A. Slodek, and E. Schab-Balcerzak, “New donor-acceptor-donor molecules based on quinoline acceptor unit with Schiff base bridge: synthesis and characterization,” J. Lumin., vol. 183, pp. 458-469, Mar. 2017.
[2] I. Bhattacharjee, N. Acharya, H. Bhatia, and D. Ray, “Dual Emission through Thermally Activated Delayed Fluorescence and RoomTemperature Phosphorescence, and Their Thermal Enhancement via Solid-State Structural Change in a Carbazole-Quinoline Conjugate,” J. Phys. Chem. Lett., vol. 9, pp. 2733–2738, May. 2018.
[3] J. Li, and A. C. Grimsdale, “Carbazole-based polymers for organic photovoltaic devices,” Chem. Soc. Rev., vol. 39, pp. 2399-2410, Feb. 2010.
[4] J. Huang, J.-H. Su, X. Li, M.-K. Lam, K.-M. Fung, H.-H. Fan, K.-W. Cheah, C. H. Chen, and H. Tian, “Bipolar anthracene derivatives containing hole- and electron-transporting moieties for highly efficient blue electroluminescence devices,” J. Mater. Chem., vol. 21, pp. 2957-2964, Jan. 2011.
[5] E. Stanislovaityte, J. Simokaitiene, S. Raisys, H. Al-Attar, J. V. Grazulevicius, A. P. Monkman, and V. Jankus, “Carbazole based polymers as hosts for blue iridium emitters: synthesis, photophysics and high efficiency PLEDs” J. Mater. Chem. C, vol. 1, pp. 8209-8221,Oct. 2013.
[6] F. Dumur, L. Beouch, S. Peralta, G. Wantz, F. Goubard, and D. Gigmes, “Solution-processed blue phosphorescent OLEDs with carbazole-based polymeric host materials,” Org. Electron., vol. 25, pp. 21-30, Oct. 2015.
[7] Y. Huo, J. Lu, S. Hu, L. Zhang, F. Zhao, H. Huang, B. Huang, and L. Zhang, “Photoluminescence properties of new Zn(II) complexes with 8-hydroxyquinoline ligands: Dependence on volume and electronic effect of substituents,” J. Mol. Struct., vol. 1083, pp. 144–151, Mar. 2015.
[8] C. W. Tang, and S. A. VanSlyke, “Organic electroluminescent diodes,” Appl. Phys. Lett., vol. 51, pp. 913-915, Jul. 1987.
[9] S. Grigalevicius, G. Buika, J. V. Grazulevicius, V. Gaidelis, V. Jankauskas, and E. Montrimas, “3,6-Di(diphenylamino)-9-alkylcarbazoles: novel hole-transporting molecular glasses,” Synthetic Met., vol. 122, pp. 311-314, Jun. 2001.
[10] K. Nasu, T. Nakagawa, H. Nomura, C.-J. Lin, C.-H. Cheng, M.-R. Tseng, T. Yasuda, and C. Adachi, “A highly luminescent spiroanthracenone-based organic light-emitting diode exhibiting thermally activated delayed fluorescence,” Chem. Commun., vol. 49, pp. 10385-10387, Sep. 2013.
[11] M.-X. Yu, J.-P. Duan, C.-H. Lin, C.-H. Cheng, and Y.-T. Tao, “Diaminoanthracene Derivatives as High-Performance Green Host Electroluminescent Materials,” Chem. Mater., vol. 14, pp. 3958-3963, Sept. 2002.
[12] J. I. Pankove, Optical Processes in Semiconductors, Prentice-Hall Inc., Englewoord Cliffs, NJ, 1971.

0
Citations (Crossref)
4.3K
Total Views
87
Total Downloads

Licence Creative Commons This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
SETSCI 2025
info@set-science.com
Copyright © 2025 SETECH
Tokat Technology Development Zone Gaziosmanpaşa University Taşlıçiftlik Campus, 60240 TOKAT-TÜRKİYE