Trapped Magnetic Field Measurement at 77 K for Multi-grain YBCO Bulk Superconductor
Sait Barış Güner1, Burcu Savaşkan2, Şükrü Çelik3*
1Recep Tayyip Erdoğan University, Rize, Turkey
2Sinop University, Sinop, Turkey
3Karadeniz Technical University, Trabzon, Turkey
* Corresponding author: sukrucelik@yahoo.com
Presented at the 2nd International Symposium on Innovative Approaches in Scientific Studies (ISAS2018-Winter), Samsun, Turkey, Nov 30, 2018
SETSCI Conference Proceedings, 2018, 3, Page (s): 903-906 , https://doi.org/
Published Date: 31 December 2018 | 1362 8
Abstract
Multi-seeded YBCO superconductors (cylindrical size) 32 mm in diameter were fabricated by top-seeded melt growth
(TSMG). Melt-processing was performed using a precursor containing 75 wt % of Y123 and 25 wt % of Y211 with 0.5 wt % of
CeO2. Trapped magnetic field at 77 K of the multi-seeded bulk samples (single grain and two grains) were studied. The maximum
trapped field measured at the top and bottom surface of single grain YBCO 32 mm in diameter were as 0.56 and 0.55 T at 77 K,
respectively. Trapped field measurements on the top and bottom surfaces of the (100) // (100) aligned samples were measured
and as the value of d increases, trapped magnetic field decreases.
Keywords - Superconductors, Crystal Growth, Magnetic Measurements, Trapped Field, Hall Probe
References
[1] F.N. Werfel, U. Floegel-Delor, R. Rothfeld, T. Riedel, B. Goebel, D. Wippich and P. Schirrmeister, “Superconductor bearings, flywheels and transportation,” Supercond. Sci. Technol., vol. 25, pp. 014007, 2012.
[2] M. Strasik, J.R. Hull, J.A. Mittleider, J.F. Gonder, P E Johnson, K.E. McCrary and C.R. McIver, An overview of Boeing flywheel energy storage systems with high-temperature superconducting bearing, Supercond. Sci. Technol., vol. 23, pp. 034021, 2010.
[3] M. Tomita, Y. Fukumoto, K. Suzuki, A. Ishihara and M. Muralidhar, “Development of a compact, lightweight, mobile permanent magnet system based on high Tc Gd-123 superconductors,” Journal of Applied Physics, vol. 109, 023912, 2011.
[4] N. Del-Valle, A. Sanchez, C. Navau, D.X. Chen, “Magnet Guideways for Superconducting Maglevs: Comparison Between Halbach-Type and Conventional Arrangements of Permanent Magnets,” J. Low Temp. Phys., vol.162, pp. 62–71, 2011.
[5] Y. Shi, N. Hari Babu and D.A. Cardwell, “Development of a generic seed crystal for the fabrication of large grain (RE)–Ba–Cu–O bulk superconductors,” Supercond. Sci. Technol., vol. 18, pp. L13–L16, 2005.
[6] Tomita, M. and Murakami, M., Natur, vol. 421, pp. 517–520, 2003.
[7] Durrell, J.H., Dennis, A.R., Jaroszynski, J., Ainslie, M.D., Palmer, K.G.B., Shi, Y., Campbell, A.M., Hull, J., Strasik, M., Hellstrom E.E. and Cardwell, D.A., Supercond. Sci. Technol., vol. 27, pp. 082001, 2014.
[8] Nariki, S., Sakai, N. and Murakami, M., Supercond. Sci. Technol., vol. 18, pp. S126–S130, 2005.
[9] Nagashima, K., Higuchi, T., Sok, J., Yoo, S.I., Fujimoto, H., and Murakami, M., Cryogenics, vol. 37, pp. 577-581, 1997.
[10] Jee, Y.A., Kim, C.-J., Sung, T.-H., Hong, G.-W., Supercond. Sci. Technol., vol. 13, pp. 195, 2000.
[11] Lo, W., Zhou, Y.X., Tang, T.B., Salama, K., Physica C, vol. 354, pp. 152- 159, 2001.
[12] Shlyk, L., Krabbes, G., Fuchs, G., Physica C, vol. 390, pp. 325–329, 2003.
[13] Sawh, R.P., Weinstein, R., Carpenter, K., Parks, D. and Davey, K., “Production run of 2 cm diameter YBCO trapped field magnets with surface field of 2 T at 77 K,” Supercond. Sci. Technol., vol. 26, pp. 105014, 2013.
[14] Z. Deng, J. Zheng, J. Li, G. Ma, Y. Lu, Y. Zhang, S. Wang, J. Wang, Materials Science and Engineering B vol. 151, pp.117–121, 2008.
[15] Choi, J.S., Park, S.D., Jun, B.H., Han, Y.H., Jeong, N.H., Kim, B.G., Sohn, J.M., Kim, C.J., Physica C, vol. 468, pp. 1473–1476, 2008.
[16] K. Kimura, K. Miyamoto, M. Hashimoto, in: Advances in Superconductivity VII, Proceeding of ISS’94, p. 681, 1994.
[17] Ph. Vanderbemden, A.D. Bradley, R.A. Doyle, W. Ro, D.M. Astill, D.A. Cardwell, A.M. Campell, Physica C, vol. 302, pp. 257, 1998.
[18] P. Schatzle, G. Krabbes, G. Stover, G. Fuchs, D. Schlafer, Supercond. Sci. Technol., vol. 12, pp. 69, 1999.
[19] Y.A. Jee, C.-J. Kim, T.-H. Sung, G.-W. Hong, Supercond. Sic. Technol., vol. 13, pp. 195, 2000..
[20] C. J. Kim, H. J. Kim, J. H. Joo, G. W. Hong, S. C. Han, Y. H. Han, T. H. Sung, and S. J. Kim, “Effects of the seed distance on the characteristics of the (100)/(100) junctions of top-seeded melt growth processed YBCO superconductors using two seeds,” Physica C, vol. 336, pp. 233–238, 2000.
[21] C.J. Kim, K.B. Kim, G.W. Hong, D.Y. Won, B.H. Kim, C.T. Kim, H.C. Moon, D.S. Suhr, “Microstructure, microhardness, and superconductivity of CeO2-added Y–Ba–Cu–O superconductors,” J. Mater. Res., vol. 7, pp. 2349, 1992.
[22] M. Murakami, “Melt-processing of high temperature superconductors,” Progress in Materials Science, vol. 38, pp. 311, 1994.
[23] J. V. J. Congreve, Y. Shi, A. R. Dennis, J. H. Durrell and D. A. Cardwell, “Improvements in the processing of large grain, bulk Y–Ba–Cu–O superconductors via the use of additional liquid phase,” Supercond. Sci. Technol., vol. 30, pp. 015017, 2017.
[24] C. J. Kim, K. B. Kim, I. H. Kook, G. W. Hong, Physica C, vol. 255, pp. 95, 1995.
[25] C. J. Kim, K. B. Kim, H. W. Park, T. H. Sung, I. H. Kuk, G. W. Hong, Supercond. Sci. Technol., vol. 9, pp. 76, 1996.
[26] C. J. Kim, G. W. Hong, Supercond. Sci. Technol., vol. 12, pp. R27, 1999.