Investigation of Spectroscopic, Theoretical and Molecular Docking of methoxyphenyl derivatives
Burak Tüzün1*, Sultan Erkan2
1Sivas Cumhuriyet University , Sivas, Turkey
2Sivas Cumhuriyet University , Sivas, Turkey
* Corresponding author: btuzun@cumhuriyet.edu.tr
Presented at the 2nd International Symposium on Innovative Approaches in Scientific Studies (ISAS2018-Winter), Samsun, Turkey, Nov 30, 2018
SETSCI Conference Proceedings, 2018, 3, Page (s): 954-961 , https://doi.org/
Published Date: 31 December 2018 | 1297 9
Abstract
The metal ions accelerate drug action and efficiency of therapeutic compounds [1]. Metal complexes
may inhibit the protein synthesis because of interference in the cellular respiration. Cancer is leading cause of
fatality in recent years and remained as a challenge for the world [2-3]. It is known that The formation of transition
metal complexes of 1,7-bis-(4-hydroxy-3-methoxyphenyl)-1,6-heptadiene-3,5-dione (curcumin), such as Co(II),
Cu(II) and Zn(II) ions, is another effective strategy for improvement of the bioavailability of curcumin and has
become an attractive field of research for organic researchers. There are a large number of reported metal
complexes of curcumin but the metal complexes of Cu(II) and Zn(II) ions have received more attention because
of their immense and diverse biological or biomedical applications. Optimized structures are calculated in B3lyp,
HF and m062x, method 3-21g, 6-31g, sdd basis set.
The 1H-NMR, 12C-NMR, UV-VİS and IR spectra of these ligands will be examined by looking at their
spectroscopic properties. At the same time, Molecular docking calculations are carried out between studied ligand
and the 1JNX that is well known one of the breast cancer proteins at DockingServer. Anti-cancer properties will
be examined by the most optimized structures of ligands.
Keywords - methoxyphenyl derivatives, Molecular docking, DFT, spectroscopy
References
1) Kareem, A., Khan, M. S., Nami, S. A., Bhat, S. A., Mirza, A. U., & Nishat, N. Curcumin derived Schiff base ligand and their transition metal complexes: Synthesis, spectral characterization, catalytic potential and biological activity. Journal of Molecular Structure, 1167 (2018) 261-273
2) Sarigül M., Deveci P., Köse M., Arslan U., Dagi H.T., Kurtoglu M., journal of molecular structure 2015, 1096, 64-73
3) Williams N.H., Takasaki B., Wall M., J. Chin. Acc. Chem. Res. 1999, 32, 485-493
4) Surendra M.S., Umamaheswara B., Krishna V., J. Saudi Chem. Soc. 2017, 21, 291-299
5) Dennington R.D., Keith T.A., Millam J.M., GaussView 5.0, 2009. Wallingford CT.
6) Frisch M.J., Trucks G.W., Schlegel H.B., Scuseria G.E., Robb M.A., Cheseman J.R., Scalmani G., Barone V., Mennucci B., Petersson G.A., Nakatsuji H., Caricato H., Li X., Hratchian H.P., Izmaylov A.F., Bloino J., Zheng G., Sonnerberg J.L., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima T., Honda Y., Kitao O.,
Nakai H., Vreven T., Montgomery J.A., Peralta J.E., Ogliaro F., Bearpark M., Heyd J.J., Brothers E., Kudin K.N., Staroverov V.N., Kobayashi R., Normand J., Raghavachari
K., Rendell A., Burant J.C., Iyengar S.S., Tomasi J., Cossi M., Nega R., Millam J.M., Klene M., Knox J.E., Cross J.B., Bakken V., Adamo C., Jaramillo J., Gomperts R.,
Stratmann R.E., Yazyev O., Austin A.J., Cammi R., Pomelli C., Ochterski J.W., Martin R.L., Morokuma K., Zakrzewski V.G., Voth G.A., Salvador P., Dannenberg J.J.,
Daprich S., Daniels A.D., Farkas A., Foreaman J.B., Ortiz JV, Cioslowski J, Fox DJ. Gaussian 09, Revision D.01, Gaussian, Inc., Wallingford CT, 2009.
7) Frisch M.J., Trucks G.W., Schlegel H.B., Scuseria G.E., Robb M.A., Cheseman J.R., Scalmani G., Barone V., Mennucci B., Petersson G.A., Nakatsuji H., Caricato H., Li X., Hratchian H.P., Izmaylov A.F., Bloino J., Zheng G., Sonnerberg J.L., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima T., Honda Y., Kitao O.,
Nakai H., Vreven T., Montgomery J.A., Peralta J.E., Ogliaro F., Bearpark M., Heyd J.J., Brothers E., Kudin K.N., Staroverov V.N., Kobayashi R., Normand J., Raghavachari
K., Rendell A., Burant J.C., Iyengar S.S., Tomasi J., Cossi M., Nega R., Millam J.M., Klene M., Knox J.E., Cross J.B., Bakken V., Adamo C., Jaramillo J., Gomperts R.,
Stratmann R.E., Yazyev O., Austin A.J., Cammi R., Pomelli C., Ochterski J.W., Martin R.L., Morokuma K., Zakrzewski V.G., Voth G.A., Salvador P., Dannenberg J.J.,
Daprich S., Daniels A.D., Farkas A., Foreaman J.B., Ortiz JV, Cioslowski J, Fox DJ., Gaussian 09, Revision A.02, Gaussian, Inc., Wallingford CT, 2009
8) Becke A.D., A new mixing of Hatree-Fock and local density-functional theories, J.Chem. Phys. 98 (1993) 1372- 1377.
9) Wiberg K.B.. Basis set effects on calculated geometries: 6-311++G** vs. aug-cc-pVDZ. J. Comput. Chem. 25 (2004) 1342–1346.
10) Beck A.D., Density-functional thermochemistry III. the role of exact, Exchange the journal of chemical physics 98 (1993) 5648-5652.
11) Lee C., Yang W., Parr R.G., Development of the Colle-Savletti correlation-energy formula into a functional of the electron density, Physical Review 37 (1988) 785-789.
12) Tüzün B., Selectivity of Salicylaldoxime and its Derivatives, Journal of New Results in Science 3-5 (2014) 67-85
13) Tüzün B., Theoretical evalution of six indazole derivatives as corrosion inhibitors based on dft, Turkish computational and theoretical chemistry, 2-1 (2018) 12-22
14) Kaya S., Tüzün B., Kaya C., Conceptual Density Functional Theoretical Investigation of the Corrosion Inhibition Efficiencies of Some Molecules Containing Mercapto (-SH) Group. Current Physical Chemistry 7-2 (2017) 147-153
15) Hepokur C., Günsel A., Yarasir M.N., Bilgiçli A.T., Tüzün B., Tüzün G., Yaylim I., Novel type ketone-substituted metallophthalocyanines: synthesis, spectral, structural, computational and anticancer studies, RSC Advances 89 (2017) 56296-56305
16) Kaya S., Tüzün B., Kaya C. Conceptual Density Functional Theoretical Investigation of the Corrosion Inhibition Efficiencies of Some Molecules Containing Mercapto (-SH) Group. Current Physical Chemistry, 7(2) (2017) 147-153.
17) Madkour L.H., Elshamy I.H. Experimental and computational studies on the inhibition performances of benzimidazole and its derivatives for the corrosion of copper in nitric acid. Int. J. Ind. Chem. 7 (2016) 195–221.
18) Pearson RG. Chemical hardness: applications from molecules to solids. Germany: Wiley-VCH: Weinheim; 1997.