Madencilik Faaliyetlerinde İnsansız Hava Araçlarının (İHA) Kullanımı
Bilgehan Kekeç1*, Niyazi Bilim2, Sertaç Dündar3, Dhikra Ghiloufi4
1Konya Teknik University, Konya, Turkey
2Konya Teknik University, Konya, Turkey
3Konya Teknik University, Konya, Turkey
4Konya Teknik University, Konya, Turkey
* Corresponding author: kekec@selcuk.edu.tr
Presented at the 2nd International Symposium on Innovative Approaches in Scientific Studies (ISAS2018-Winter), Samsun, Turkey, Nov 30, 2018
SETSCI Conference Proceedings, 2018, 3, Page (s): 174-178 , https://doi.org/
Published Date: 31 December 2018 | 1482 11
Abstract
Teknoloji günümüzde her alanda kullanılmaktadır. İnsansız Hava Araçlarının da çeşitli sektörlerde (İHA) kullanımı gün
geçtikçe artmaktadır. İlk zamanlarda askeri amaçlar için kullanılan İHA teknolojisi, günümüzde jeodezi, tarım, meteroloji,
iletişim, acil durum yönetimi, trafik yönetimi, güvenlik, taşıma ve madencilik gibi alanlarda da kullanılmaya başlanmıştır. Son
yıllarda, dünyada madencilik faaliyetlerinde, maden üretim planlaması, patlatma verim analizleri, ekipman konumlarının tespiti,
cevher üretim ve stok hacimlerinin hassas hesaplanması, arazi aplikasyonu, ocaktaki değişimlerin izlenmesi ve şev
duraylılıklarının takip edilmesi gibi bir çok alanda kullanılabilmektedir. Madencilik sektöründe zaman kaybı ve gereksiz maliyet
karlılığı doğrudan etkileyen önemli parametrelerdir. Gereksiz zaman kaybını önlemek ve maliyet kontrolünü sağlayabilmek
adına İHA ile denetim etkili bir yöntem olabilmektedir. Madencilik alanında İHA’ların kullanımı sayesinde madenin havadan
izlenmesi ve yönetilmesi geleneksel yöntemlere nazaran önemli ölçüde zaman tasarrufu ve ölçüm hassasiyeti sağlamaktadır. Bu
çalışmanın amacı madencilik alanında İHA’ların kullanımının faydalarını anlatmak ve kullanımının yaygınlaşmasını
sağlamaktır.
Keywords - Madencilik, İnsansız hava araçları, Arazi ölçümleri
References
[1] Vacca, A., Onishi, H., 2017, Drones: military weapons, surveillance or mapping tools for environmental monitoring? The need for legal framework is required, Transportation Research Procedia 25, 51–62.
[2] Birleşmiş Milletler Çevre Programı (UNEP) Küresel Çevre Uyarı Servisi (GEAS), 2013, A new eye in the sky: Eco-drones, Environmental Development 7, 155–164.
[3] Watts, A.C., Ambrosia, V.G., Hinkley, E.A., 2012, Unmanned Aircraft Systems in remote sensing and scientific research: Classification and considerations of use, Remote Sensing 4, 1671-1692.
[4] CielMap, 2012, Low-cost unmanned aircraft systems for development projects: a quiet revolution. Presentation, Sciences Po Paris.
[5] Bernauw, K., 2016, Drones: The emerging era of unmanned civil aviation, Collected Papers of Zagreb Law Faculty 66(2-3), 223-248.
[6] Näsi, R., Viljanen, N., Kaivosoja, J., Alhonoja, K., Hakala, T.,Markelin, L., Honkavaara, E., 2018, Estimating Biomass and Nitrogen Amount of Barley and Grass Using UAV and aircraft based spectral and photogrammetric 3D features, Remote Sensing 10, 1082.
[7] P.U., Pajas, J.A., Pérez-Cabello, F., Redón, J.V., Lebrón, B.E., 2018,
The potential of drones and sensors to enhance detection of archaeological cropmarks: A comparative study between multi-spectral and thermal imagery, Drones 2, 29.
[8] Calleja, J.F., Pagés, O.R, Díaz-Álvarez, N., Peón, J., Gutiérrez, N., Martín-Hernández, E., Relea, A.C., Melendi, D.R., Álvarez, P.F., 2018,
Detection of buried archaeological remains with the combined use of satellite multispectral data and UAV data, Int J Appl Earth Obs Geoinformation 73, 555-573.
[9] Fernández-Lozano, J., Gutiérrez-Alonso, G., 2016, Improving archaeological prospection using localized UAVs assisted photogrammetry: An example from the Roman Gold District of the Eria River Valley (NW Spain), Journal of Archaeological Science: Reports 5, 509-520.
[10] Bagaram, M.B. , Giuliarelli, D., Chirici, G. , Giannetti, F., Barbati, A., 2018, UAV remote sensing for biodiversity monitoring: Are forest canopy gaps good covariates?, Remote Sensing 10, 1397.
[11] Dash, J.P., Pearse, G.D., Watt, M.S., 2018, UAV multispectral imagery can complement satellite data for monitoring forest health, Remote Sensing 10, 1216.
[12] Iizuka, K., Watanabe, K., Kato, T., Putri, N.A., Silsigia, S., Kameoka, T., Kozan, O., 2018, Visualizing the spatiotemporal trends of thermal characteristics in a Peatland plantation forest in Indonesia: Pilot test using Unmanned Aerial Systems (UASs), Remote Sensing 10, 1345.
[13] Lehmann, J.R.K., Nieberding, F., Prinz, T., Knoth, C., 2015, Analysis of Unmanned Aerial System-Based CIR İmages in Forestry—A new perspective to monitor pest infestation levels, Forests 6, 594-612.
[14] Shin, P., Sankey, T., Moore, M.M., Thode, A.E., Evaluating Unmanned Aerial Vehicle images for estimating forest canopy fuels in a ponderosa pine stand, Remote Sensing 10, 1266.
[15] Evans, L.J., Jones, T.H., Pang, K., Saimin, S., Goossens, B., 2016, Spatial ecology of Estuarine Crocodile (Crocodylus porosus) nesting in a fragmented landscape, Sensors 16, 1527.
[16] Bonnin, N., Van Andel, A.C., Kerby, J.T., Piel, A.K., Pintea, L., Wich, S.A., 2018, Assessment of Chimpanzee nest detectability in DroneAcquired images, Drones 2, 17.
[17] Collins, M.D., 2018, Using a drone to search for the Ivory-Billed
Woodpecker (Campephilus principalis), Drones 2, 11. [18] Rey, N., Volpi, M., Joost, S., Tuia, D., 2017, Detecting animals in African Savanna with UAVs and the crowds, Remote Sensing of Environment 200, 341-351.
[19] Kellenberger, B., Marcos, D., Tuia, D., 2018, Detecting mammals in UAV images: Best practices to address a substantially imbalanced dataset with deep learning, Remote Sensing of Environment 216, 139- 153.
[20] Palace, M., Herrick, C., DelGreco, J., Finnell, D., Garnello, A.J., McCalley, C., McArthur, K., Sullivan,F., Varner, R.K., 2018, Determining subarctic peatland vegetation using an Unmanned Aerial System (UAS), Remote Sensing 10, 1498.
[21] Alvarez-Taboada, F., Paredes, C., Julián-Pelaz, J., 2017, Mapping of the Invasive Species Hakea sericea Using Unmanned Aerial Vehicle (UAV) and WorldView-2 Imagery and an Object-Oriented Approach, Remote Sensing 9, 913.
[22] Van Iersel, W., Straatsma,M., Addink, E., Middelkoop, H., 2018, Monitoring height and greenness of non-woody floodplain vegetation with UAV time series, ISPRS Journal of Photogrammetry and Remote Sensing 141, 112–123.
[23] Gray, P.C. , Ridge, J.T., Poulin, S.K. , Seymour, A.C., Schwantes, A.M., Swenson, J.J., Johnston, D.W., 2018, Integrating drone imagery into high resolution satellite remote sensing assessments of estuarine environments, Remote Sensing 10, 1257.
[24] Onitsuka, K., Ninomiya, K., Hoshino, S., 2018, Potential of 3D visualization for collaborative rural landscape planning with remote participants, Sustainability 10, 3059.
[25] Hammoud, B., Faour, G., Ayad, H., Ndagijimana, F., Jomaah, J., 2018, Performance analysis of detector algorithms using Drone-Based Radar Systems for oil spill detection, Proceedings 2, 370.
[26] Ferrara, C., Lega, M. , Fusco, G., Bishop, P., Endreny, T., 2017, Characterization of terrestrial discharges into coastal waters with thermal imagery from a hierarchical monitoring program, Water 9, 500.
[27] Gonçalves, J.A., Henriques, R., 2015, UAV photogrammetry for topographic monitoring of coastal areas, ISPRS Journal of Photogrammetry and Remote Sensing 104, 101–111.
[28] Duffy, J.P., Shutler, J.D., Witt, M.J., DeBell, L., Anderson, K., 2018, Tracking fine-scale structural changes in coastal dune morphology using kite aerial photography and uncertainty-assessed structure-frommotion photogrammetry, Remote Sensing 10, 1494.
[29] Hemmelder, S., Marra, W., Markies, H., De Jong, S.M., 2018, Monitoring river morphology & bank erosion using UAV imagery – A case study of the river Buëch, Hautes-Alpes, France, Int J Appl Earth Obs Geoinformation 73, 428-437.
[30] Casado, M.R., Irvine, T., Johnson, S., Palma, M., Leinster, P., 2018, The use of Unmanned Aerial Vehicles to estimate direct tangible losses to residential properties from flood events: A case study of Cockermouth following the Desmond storm, Remote Sensing 10, 1548.
[31] Cruz, H., Eckert, M., Meneses, J., Martínez, J.F., 2016, Efficient forest fire detection index for application in Unmanned Aerial Systems (UASs), Sensors 16, 893.
[32] Barmpounakis, E.N., Vlahogianni, E.I., Golias, J.C., 2016, Unmanned Aerial Aircraft Systems for transportation engineering: Current practice and future challenges, International Journal of Transportation Science and Technology 5, 111-122.
[33] Huh, J.H., 2018, PLC-Integrated sensing technology in mountain regions for drone landing sites: Focusing on software technology, Sensors 18, 2693.
[34] Alsafasfeh, M., Abdel-Qader, I., Bazuin, B., Alsafasfeh, Q., Su, W., 2018, Unsupervised fault detection and analysis for large photovoltaic
systems using drones and machine vision, Energies 11, 2252.
[35] Madjid, M.Y.A., Vandeginste, V., Hampson, G., Jordan, C.J., Booth, A.D., 2018, Drones in carbonate geology: Opportunities and challenges, and application in diagenetic dolomite geobody mapping, Marine and Petroleum Geology 91, 723-734.
[36] Bemis, S.P., Micklethwaite, S., Turner, D., James, M.R., Akciz, S., Thiele, S.T., Bangash, H.A., 2014, Ground-based and UAV-Based photogrammetry: A multi-scale, highresolution mapping tool for structural geology and paleoseismology, Journal of Structural Geology 69, 163-178.
[37] Tziavou,O., Pytharouli, S., Souter, J., 2018, Unmanned Aerial Vehicle (UAV) based mapping in engineering geological surveys: Considerations for optimum results, Engineering Geology 232, 12-21.
[38] Ridolfi, E., Manciola, P., 2018, Water level measurements from drones: A pilot case study at a dam site, Water 10, 297.
[39] Wilkowski, W., Lisowski, M., Wyszyński, M., Wierzbicki, D., 2017, The use of unmanned aerial vehicles (drones) to determine the shoreline
of natural watercourses, Journal of Water and Land Development 35, 259-264.
[40] Na, W.S., Baek, J., 2017, Impedance-Based Non-Destructive Testing Method Combined with Unmanned Aerial Vehicle for Structural Health Monitoring of Civil Infrastructures, Applied Sciences 7, 15.
[41] Entrop, A.G., Vasenev, A., 2017, Infared drones in the construction industry : Designing a protocol for building thermography procedures, Energy Procedia 132, 63-68.
[42] Molina, M. , Frau, P., Maravall, D., 2018, A collaborative approach for surface inspection using aerial robots and computer vision, Sensors 18, 893.
[43] Ridolfi, E., Buffi, G., Venturi, S., Manciola, P., 2017, Accuracy Analysis of a Dam Model from Drone Surveys, Sensors 17, 1777.
[44] Kršák, B., Blištan, P., Pauliková, A., Puškárová, P., Kovanic, L., Palková, J., Zeliznaková, V., 2016, Use of low-cost UAV photogrammetry to analyze the accuracy of a digital elevation model in a case study, Measurement 91, 276-287.
[45] Dunnington, L., Nakagawa, M., 2017, Fast and safe gas detection from underground coal fire by drone fly over, Environmental Pollution 229, 139-145.
[46] Malpeli, K.C., Chirico, P.G., 2015, Testing a small UAS for mapping artisanal diamond mining in Africa, Photogrammetric Engineering & Remote Sensing 81 (4), 258-263.
[47] Jackisch, R., Lorenz, S., Zimmermann, R., Möckel, R., Gloaguen, R., Drone-borne hyperspectral monitoring of Acid Mine Drainage: An example from the Sokolov lignite district, Remote Sensing 10, 385.
[48] Doshi, A.A., Postula, A.J., Fletcher, A., Singh, S.P.N., 2015, Development of micro-UAV with integrated motion planning for opencut mining surveillance, Microprocessors and Microsystems 39, 829- 835.
[49] Bamford, T., Esmaeili, K., Schoellig, A.P., Aerial rock fragmentation analysis in low-light condition using uav technology, Mineral Endüstrisinde Bilgisayar ve Operasyon Araştırmalarının 38. Uygulaması, Golden, ABD, Auğ. 2017.
[50] Freire, G.R., Cota, R.F., 2017, Capture of images in inaccessible areas in an underground mine using an unmanned aerial vehicle, Underground Mining Technology, Australian Centre for Geomechanics, 2017, Perth.
[51] Fraser, B.T., Congalton, R.G., 2018, Issues in Unmanned Aerial Systems (UAS) data collection of complex forest environments, Remote Sensing 10, 908.
[52] Tong, X., Liu, X., Chen, P., Liu, S., Luan, K., Li, L., Liu, S., Liu, X., Xie, H., Jin, Y., Hong, Z., 2015, Integration of UAV-Based Photogrammetry and Terrestrial Laser Scanning for the threedimensional mapping and monitoring of open-pit mine areas, Remote Sensing 7, 6635-6662.
[53] Jakob, S., Zimmermann, R., Gloaguen, R., 2017, The Need fo Accurate Geometric and Radiometric Corrections of Drone-Borne Hyperspectral Data for Mineral Exploration: MEPHySTo—A Toolbox for Pre-Processing Drone-Borne Hyperspectral Data, Remote Sensing 9, 88.
[54] Sganzerla, C., Seixas, C., Conti, A., 2016, Disruptive innovation in digital mining, Procedia Engineering 138, 64-71.
[55] Szentpeteri, K., Setiawan, T.R., Ismanto, A., 2016, Drones (UAVs)in mining and Exploration. An application example: Pit Mapping and Geological Modelling, Unconventional Exploration Target & new tools in mineral and coal exploration, 2016, Bandung, West Java, 45-49.
[56] Beregovoi, D.V., Younes, J.A., Mustafin, M.G., 2017, Monitoring of quarry slope deformations with the use of satellite positioning technology and unmanned aerial vehicles, Procedia Engineering 189, 737-743.
[57] Kirsch, M. , Lorenz, S., Zimmermann, R., Tusa, L., Möckel, R., Hödl, P., Booysen, R., Khodadadzadeh, M., Gloaguen, R., 2018, Integration of Terrestrial and Drone-Borne Hyperspectral and Photogrammetric Sensing methods for exploration mapping and mining monitoring, Remote Sensing 10, 1366.
[58] Wang, Y.J, Tian, F., Huang,Y., Wang, J., Wei, C.J., 2015, Monitoring coal fires in Datong coalfield using multi-source remote sensing data, Transactions of Nonferrous Metals Society in China 25, 3421−3428.
[59] Martin, P.G., Payton, O.D., Fardoulis, J.S., Richards, D.A., Scott, T.B., 2015, The use of unmanned aerial systems for the mapping of legacy uranium mines, Journal of Environmental Radioactivity 143, 135-140.
[60] Azhari, F., Kiely, S., Sennersten, C., Lindley, C., Matuszak, M., Hogwood, S., 2017, A comparison of sensors for underground void mapping by unmanned aerial vehicles, Underground Mining Technology, Australian Centre for Geomechanics, 2017, Perth.
[61] Shahbazi, M., Sohn, G., Théau, J., Ménard, P., 2015, UAV-based point cloud generation for open-pit mine modelling, International Conference on Unmanned Aerial Vehicles in Geomatics, 2015, Toronto, 313-320.
[62] Altan,A., Bayraktar, K., Hacıoğlu, R., İnsansız Hava Aracı ile Maden Ocağının Eş Zamanlı Konum Belirleme ve Haritalandırılması, 24. Sinyal İşleme ve İletişim Uygulamaları Kurultayı, Zonguldak, 16-19 Mayıs 2016.
[63] Yücel, M.A., Yücel, D.Ş, Turan, R.Y., İnsansiz hava araci (İHA) kullanilarak çan (çanakkale) ilçesinde bulunan asit maden göllerinin alansal değişiminin coğrafi bilgi sistemi (CBS) ortaminda incelenmesi, 67.Türkiye Jeoloji Kurultayı, Ankara, 14-18 Nisan 2014.