Kompleks Değerli Yapay Sinir Ağları ile Kardiotokogram Verisinde Morfolojik Örüntü Sınıflandırma
Eda Çapa Kızıltaş 1*, Ayşenur Uzun 2, Ersen Yılmaz 3
1Borçelik Çelik Sanayi Ticaret A.Ş , Bursa , Turkey
2Bursa Uludağ University , Bursa , Turkey
3Bursa Uludağ University , Bursa , Turkey
* Corresponding author: eckiziltas@borcelik.com
Presented at the 3rd International Symposium on Innovative Approaches in Scientific Studies (Engineering and Natural Sciences) (ISAS2019-ENS), Ankara, Turkey, Apr 19, 2019
SETSCI Conference Proceedings, 2019, 4, Page (s): 501-503
Published Date: 01 June 2019
Bu çalışmada UCI Makine Öğrenmesi havuzundan alınan kardiotokogram verisinde morfolojik örüntü sınıflandırması yapılmıştır. Sınıflandırıcı olarak kompleks değerli yapay sinir ağları kullanılmıştır. Sınıflandırıcının performansı 10-katlı çapraz doğrulama yaklaşımı kullanılarak incelenmiştir. Performans sonuçları doğruluk, duyarlılık ve özgüllük ölçütleri kullanılarak detaylı biçimde sunulmuştur.
Keywords - Kardiyotokografi, Kompleks Değerli Yapay Sinir Ağları, Makine Öğrenmesi, Sınıflandırma
[1] Z. Alfirevic, D. Devane, G.M. Gyte, A. Cuthbert "Continuous cardiotocography (CTG) as a form of electronic fetal monitoring (EFM) for fetal assessment during labour," Cochrane Database Syst Rev,vol. 2, 2017
[2] R.A.R.S. Baluz and C.N. dos Santos, “Applying machine learning approaches to assess Cardiotocography exams,” in 6th Iberian Conference on Information Systems and Technologies(CISTI 2011), 2011, pp. 1-6.
[3] S.G. Jacob and R.G. Ramani, "Evolving efficient classification rules from cardiotocography data through data mining methods and techniques," in European Journal of Scientific Research, 2012, vol. 78, pp. 468-480.
[4] N. Chamidah, and I. Wasito, "Fetal state classification from cardiotocography based on feature extraction using hybrid K-Means and support vector machine," in 2015 International Conference on Advanced Computer Science and Information Systems (ICACSIS), 2015, pp. 37-41
[5] H. Sahin and A. Subasi, "Classification of the cardiotocogram data for anticipation of fetal risks using machine learning techniques," Applied Soft Computing, vol. 33, pp. 231-238, 2015.
[6] E. Yılmaz, "Fetal State Assessment from Cardiotocogram Data Using Artificial Neural Networks," Journal of Medical and Biological Engineering, vol. 36, pp. 820-832, 2016.
[7] A. Uzun, E.C. Kiziltas and E. Yılmaz, "Cardiotocography Data Set Classification with Extreme Learning Machine," in International Conference on Advanced Technologies, Computer Engineering and Science (ICATCES’18),2018
[8] (2007) UCI machine learning repository. [Online] Available: https://archive.ics.uci.edu/ml/index.php
[9] M.L. Huang and Y.Y. Hsu, “Fetal distress prediction using discriminant analysis, decision tree, and artificial neural network,” Journal of Biomedical Science and Engineering, vol. 5.09, p. 526, 2012.
[10] E. Yılmaz and C. Kılıkçıer, “Determination of fetal state from cardiotocogram using LS-SVM with particle swarm optimization and binary decision tree,” Computational and mathematical methods in medicine, 2013.
[11] H. Ocak and H.M. Ertunc, “Prediction of fetal state from the cardiotocogram recordings using adaptive neuro-fuzzy inference systems,” Neural Computing and Applications, vol. 23.6, pp. 1583- 1589, 2013.
[12] S. Aladağ, and A. Güven, "Kardiyotokogram Verilerinin Yapay Sinir Ağları ile Sınıflandırılması Classification of Cardiotocogram Data with Using Artificial Neural Networks," in Tıp Teknolojileri Ulusal Kongresi’14, 2014
[13] Z. Cömert, A.F. Kocamaz, S. Güngör, "Cardiotocography signals with artificial neural network and extreme learning machine," in 24th Signal Processing and Communication Application Conference (SIU), May 2016, pp. 1493-1496.
[14] R.S. Kamath and R. K. Kamat, "Modelling Fetal Morphologic Patterns Through Cardiotocography Data: Decision Tree Based Approach," Journal of Pharmacy Research, vol.12.1 pp. 9-12, 2017
[15] D. Ayres de Campos, J. Bernardes, A. Garrido, J. Marques-de-Sa and L. Pereira-Leite, “SisPorto 2.0 :A Program for Automated Analysis of Cardiotocograms,” Journal of Matern Fetal Med, vol. 9.5, pp.311-318 ,2000
[16] A. Hirose, Complex-Valued Neural Networks: Theories and Applications, World Scientific Publishing Co. Pte. Ltd. 5 Toh Tuck Link, Singapure, 2003, pp.1-6.
[17] H. Gürüler, "A novel diagnosis system for Parkinson’s disease using complex-valued artificial neural network with k-means clustering feature weighting method," Neural Computing and Applications, vol.28.7, pp. 1657-1666, 2017
[18] M.F. Amin and K. Murase. "Single-layered complex-valued neural network for real-valued classification problems." Neurocomputing, vol.72.4-6, pp. 945-955, 2009
![]() |
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |