Stronsiyum ve Stronsiyum-Magnezyum katkılarının Al-9Si Alaşımının Yapısal ve Mekanik Özelliklerine Etkisi
Ali Paşa Hekimoğlu1*, Merve Çalış2, Gizem Ayata3
1Recep Tayyip Erdoğan University , Rize, Turkey
2Recep Tayyip Erdoğan University, Rize, Turkey
3Recep Tayyip Erdoğan University, Rize, Turkey
* Corresponding author: ali.hekimoglu@erdogan.edu.tr
Presented at the Ist International Symposium on Innovative Approaches in Scientific Studies (ISAS 2018), Kemer-Antalya, Turkey, Apr 11, 2018
SETSCI Conference Proceedings, 2018, 2, Page (s): 422-426 , https://doi.org/
Published Date: 23 June 2018 | 1265 8
Abstract
Bu çalışmada birer adet ikili Al-9Si, üçlü Al-9Si-0,1Sr ve dörtlü Al-9Si-0,1Sr-0,6Mg alaşımı indüksiyonlu ergitme ocağında ergitme ve oda sıcaklığında tutulan kokil kalıba döküm yöntemi ile üretildi. Alaşımların yapısal ve mekanik özellikleri üretilen alaşım külçelerinden talaşlı imalat yöntemiyle hazırlanan numuneler üzerinde yapılan incelemeler ile belirlendi. İçyapı incelemeleri standart metalografik yöntemler ile hazırlanan ancak dağlama yapılmayan numuneler üzerinde gerçekleştirildi. Sertlik değerleri Brinell sertlik ölçüm yöntemi, akma ve çekme dayanımı ile kopma uzaması değerleri ise
universal bir çekme deneyi makinesinde yapılan testler yardımıyla belirlendi. İkili Al-9Si alaşımının içyapısının alüminyumca zengin α dendiritleri, primer silisyum, ötektik Al-Si fazlarından oluştuğu, üçlü Al-9Si-0,1Sr alaşımının içyapısında ise ikili Al-9Si alaşımındaki fazlara ek olarak AlxSiySrz fazı oluştuğu görüldü. Üçlü Al-9Si-0,1Sr alaşımına %0,6 oranında yapılan magnezyum katkısının ise içyapıyı belirgin bir şekilde etkilemediği görüldü. Al-9Si alaşımına %0,1 oranında yapılan stronsiyum katkısının sertliği çok az da olsa düşürdüğü, akma ve çekme dayanımı ve kopma uzaması değerlerini ise iyileştirdiği görüldü. Üçlü Al-9Si-0,1Sr alaşımına yapılan magnezyum katkısının ise akma ve çekme mukavemetini önemli ölçüde artırırken, kopma uzaması değerini azalttığı görüldü. Stronsiyum ve stronsiyum-magnezyum katkılarının ikili Al-9Si alaşımının sertlik, akma ve çekme mukavemeti ile kopma uzaması değerlerinde yol açtığı değişimler yapısal özelliklerine dayandırılarak açıklandı.
Keywords - Al-Si alaşımları, Al-9Si-0,1Sr alaşımı, Al-9Si-0,1Sr-0,6Mg alaşımı, İçyapı, Mekanik özellik
References
[1] ASM International, 1992. ASM Handbook Volume 15: Casting (10th ed.). Ohio: ASM Publication
[2] Shaha, S.K., Czerwinski, F., Kasprzak, W., Friedman, J., Chen and D.L., 2015a. Monotonic and cyclic deformation behavior of the Al-SiCu-Mg cast alloy with micro-additions of Ti, V and Zr. International Journal of Fatigue, 70, 383-394.
[3] Jeong, C.Y.,2013. High temperature mechanical properties of AlSiMg(Cu) alloys for automotive cylinder heads. Materials Transactions, 54, 588-594.
[4] Mohamed, A.M.A., Samuel, F.H. and Kahtani, S.A., 2013. Microstructure, tensile properties and fracture behavior of high temperature Al-Si-Mg-Cu cast alloys. Materials Science and Engineering A, 577, 64-72.
[5] Tebib, M., Samuel, A.M., Ajersch, F. And Chen, X.G., 2014. Effect of P and Sr additions on the microstructure of hypereutectic Al-15Si-14Mg-4Cu alloy. Materials Characterization, 89, 112-123.
[6] Vijeesh, V. and Prabhu, K.N., 2014. Review of microstructure evolution in hypereutectic Al-Si alloys and its effect on wear properties. Transactions of the Indian Institute of Metals, 67, 1-18.
[7] Shaha, S.K.,Czerwinski, F., Kasprzak, W., Friedman, J. and Chen, D.L., 2015b. Effect of solidification rate and loading mode on deformation behavior of cast Al-Si-Cu-Mg alloy with additions of transition metals. Materials Science and Engineering A, 636, 361-372.
[8] Shaha, S.K.,Czerwinski, F., Kasprzak, W., Friedman, J. And Chen, D.L., 2015c. Microstructure and mechanical properties of Al-Si cast alloy with additions of Zr-V-Ti. Materials and Design, 83, 801-812.
[9] Choi, S.W., Kim, Y.M., Lee, K.M., Cho, H.S., Hong, S.K., Kim, Y.C., Kang, C.S. and Kumai, S., 2014. The effects of cooling rate and heat treatment on mechanical and thermal characteristics of Al-Si-Cu-Mg foundry alloys. Journal of Alloys and Compounds, 617, 654-659. DOI:10.1016/j.jallcom.2014.08.033
[10] Ye, H., 2003. An overview of the development of Al-Si-alloy based material for engine applications. Journal of Materials Engineering and Performance, 12, 288-297.
[11] Li, X.P.,Wang, X.J., Saunders, M., Suvorova, A., Zhang, L.C., Liu, Y.J., Fang, M.H., Huang, Z.H. and Sercombe, T.B.,2015. A selective laser melting and solution heat treatment refined Al-12Si alloy with a controllable ultrafine eutectic microstructure and 25% tensile ductility. Acta Materialia, 95, 74-82.
[12] Peijie, L., Jingjie, G., Jun, J., Qingchun, L. and Khosen, R., 1996. Physical properties and solidification structure of Al-Si eutectic alloy melt with cerium modification. Journal of Rare Earths, 14, 143-144
[13] Hafiz, M.F. and Kobayashi, T., 1994. Mechanical properties of modified and non modified eutectic Al-Si alloys. Keikinzoku/Journal of Japan Institute of Light Metals, 44, 28-34.
[14] Davis, J.R., 2001. Alloying: Understanding the Basics, ASM International, ISBN: 978-0-87170-744-4, 351-416
[15] Garay-Tapia, A.M.,Romero, A.H., Trapaga, G. and Arróyave, R., 2012. First-principles investigation of the Al-Si-Sr ternary system:Ground state determination and mechanical properties. Intermetallics, 21, 31-44.
[16] TS EN 1706, 2010. Alüminyum ve Alüminyum Alaşımları-DökümlerKimyasal Bileşim ve Mekanik Özellikler. TSE, Ankara, 7. Baskı, 3-25s.
[17] ASM International, 1990. ASM Handbook Volume 3:Alloy Phase Diagrams. ASM International, ISBN: 978-1-62708-070-5
[18] ASM International, 1990. ASM Handbook Volume 2: Properties and Selection: Nonferrous Alloys and Special-Purpose Materials. ASM International, ISBN: 978-0-87170-378-1
[19] Shin, J.S., Kim, B.H. and Lee, S.M., 2011. Effects of physical melt treatments on microstructural evolution and anodizing characteristics of Al-Si casting alloys. Materials Science Forum, 695, 243-246. DOI:10.4028/www.scientific.net/MSF.695.243
[20] Nakayama, Y.,Ninomiya, K. and Ohnishi, N.c., 1998. Effect of solution treatment condition on the mechanical properties of Al-2%Si- 0.6%Mg casting alloy.Keikinzoku/Journal of Japan Institute of Light Metals, 48, 346-351. DOI: 10.2464/jilm.48.346
[21] Sui, Y.,Wang, Q., Liu, T., Ye, B., Jiang, H. and Ding, W., 2015. Influence of Gd content on microstructure and mechanical properties of cast Al-12Si-4Cu-2Ni-0.8Mg alloys. Journal of Alloys and Compounds, 644, 228-235.
[22] Sui, Y.,Wang, Q., Ye, B., Zhang, L., Jiang, H. and Ding, W., 2015. Effect of solidification sequence on the microstructure and mechanical properties of die-cast Al-11Si-2Cu-Fe alloy. Journal of Alloys and Compounds, 649, 679-686.
[23] Nogita, K., McDonald, S.D. and Dahle, A.K., 2013. Effects of boronstrontium interactions on eutectic modification in Al-10 mass % Si alloys. Materials Transactions, 44, 692-695.
[24] Hwang, J.Y.,Doty, H.W. and Kaufman, M.J., 2008. Theeffects of Mn additions on the microstructure and mechanical properties of Al-Si-Cu casting alloys. Materials Science and Engineering A, 488, 496-504.
[25] Shabestari, S.G. and Moemeni, H., 2004. Effect of copper and solidification conditions on the microstructure and mechanical properties of Al-Si-Mg alloys. Journal of Materials Processing Technology, 153-154, 193-198.
[26] Liang, Z.X., Ye, B., Zhang, L., Wang, Q.G., Yang, W.Y. and Wang, Q.D., 2013. A new high-strength and corrosion-resistant Al-Si based casting alloy. Materials Letters, 97, 104-107.
[27] Yue, T.M., Ha, H.U. and Musson, N.J., 1995. Grain size effects on the mechanical properties of some squeeze cast light alloys. Journal of Materials Science, 30, 2277-2283.
[28] Li, P.,Nikitin, V.I., Kandalova, E.G. and Nikitin, K.V., 2002. Effect of melt overheating, cooling and solidification rates on Al–16wt.%Si alloy structure. Materials Science and Engineering A, 332, 371–374.
[29] Li, Y.J., Brusethaug, S. and Olsen, A., 2006. Influence of Cu on the mechanical properties and precipitation behavior of AlSi7Mg0.5 alloy during aging treatment. Scripta Materialia, 54, 99-103.
[30] Li, Z., Li, C., Liu, Y., Yu, L., Guo, Q. and Li, H., 2016. Effect of heat treatment on microstructure and mechanical property of Al-10%Mg2Si alloy. Journal of Alloys and Compounds, 663, 16-19.
[31] Gholizadeh, R. and Shabestari, S.G., 2011. Investigation of the effects of Ni, Fe, and Mn on the formation of complex intermetallic compounds in Al-Si-Cu-Mg-Ni alloys. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 42, 3447- 3458.
[32] Zhao, A.M.,Mao, W.M., Zhen, Z.S., Jiang, C.M. and Zhong, X.Y., 2001. Effects of cooling rate on solidification microstructures and wear resistance of ypereutectic Al-Si alloy. Zhongguo Youse Jinshu Xuebao/Chinese Journal of Nonferrous Metals, 11, 827-833.
[33] Wang, Q.G. and Davidson, C.J., 2001. Solidification and precipitation behaviour of Al-Si-Mg casting alloys. Journal of Materials Science, 36, 739-750.
[34] Xu, C., Wang, F., Mudassar, H., Wang, C., Hanada, S., Xiao, W. and Ma, C., 2017. Effect of Sc and Sr on the eutectic Si morphology and tensile properties of Al-Si-Mg alloy. Journal of Materials Engineering and Performance, 26(4), 1605-1613.
[35] Liao, H., Sun, Y. and Sun, G., 2002. Correlation between mechanical properties and amount of dendritic-Al phase in as-cast near-eutectic Al–11.6% Si alloys modified with strontium. Materials Science and Engineering A, 335, 62–66.
[36] Nogita, K. and Dahle, A.K., 2001a. Eutectic growth mode in strontium antimony and phosphorus modified Al–Si foundry alloys. Materials Transactions, 42, 393–396.
[37] Nogita, K. and Dahle, A.K., 2001b. Determination of eutectic solidification mode in Sr-modified hypoeutectic Al–Si alloys by EBSD. Materials Transactions, 42, 207–214.
[38] Nogita, K. and Dahle, A.K., 2001c. Eutectic solidification in hypoeutectic Al–Si alloys: electron backscatter diffraction analysis.Materials Characterization, 46, 305–310.
[39] Liao, H., Sun, Y. And Sun, G., 2002. Correlation between mechanical properties and amount of dendritic Al phase in as-cast near-eutectic Al–11.6% Si alloys modified with strontium. Materials Science and Engineering A, 335, 62–66.
[40] Wu, Zhaoxuan and Curtin, W.A., 2015. The origins of high hardening and low ductility in magnesium, Nature, 526, 62-75,