Open Access
3B Süperiletken Tellerin Benzeşimi için Yeni ve Verimli Bir Sayısal Model
Fedai İnanır1*, Şükrü Yıldız2, Fedor Gömöry3
1Department Physics, Yıldız Technical University  , İstanbul, Turkey
2Ahi Evran University, Kırşehir, Turkey
3Slovak Academy of Sciences , -, Slovakia
* Corresponding author: inanir@yildiz.edu.tr

Presented at the Ist International Symposium on Innovative Approaches in Scientific Studies (ISAS 2018), Kemer-Antalya, Turkey, Apr 11, 2018

SETSCI Conference Proceedings, 2018, 2, Page (s): 431-433 , https://doi.org/

Published Date: 23 June 2018    | 1118     8

Abstract

Maxwell denkleminin AV formülasyonu esas alınarak, zamana bağlı bir akım altında süperiletken telin elektromanyetik özelliklerini çözmek için yeni bir sayısal model geliştirilmiştir. Farklı akım genlikleri için alternatif akım (AA) kayıpları hesaplanmış ve iki boyutlu (2B) H formülasyonu ile kıyaslanarak modeller arasında oldukça iyi bir uyum sağlanmıştır. Önerilen model, hesaplama süresini mevcut modellere kıyasla önemli ölçüde azaltmaktadır. 3B'deki akım ve manyetik alan dağılımları, geçen akımın farklı zaman adımları için gösterilmiştir.  

Keywords - 3B modelleme, Yüksek sıcaklık süperiletkenleri, Transport akım

References

[1] F. Grilli, “Numerical modeling of HTS applications,” IEEE Trans. Appl. Supercond. vol. 26, no. 3, pp. 0500408, Apr. 2016.

[2] N. Amemiya, N. Enomoto and S. Shunsuke, “FEM analysis of AC loss in twisted Bi-2223 multifilamentary tapes carrying AC transport current in AC transverse magnetic field with arbitrary orientation,” IEEE Trans. Appl. Supercond. vol. 14 pp. 782-785, Jun. 2004.

[3] N. Banno and N. Amemiya, “Theoretical model of twisted high T-c superconducting tapes for numerical alternating-current loss calculations,” J. Appl. Phys. vol. 85, pp. 4243-4249, Apr. 1999.

[4] N. Amemiya, F. Kimura, and T. Ito, “Total ac loss in twisted multifilamentary coated conductors carrying ac transport current in ac transverse magnetic field,” IEEE Trans. Appl. Supercond., vol. 17, no. 2, pp. 3183–3186, Jun. 2007.

[5] R. Pecher, M. D. McCulloch, S. J. Chapman, L. Prigozhin and C. M. Elliott, Proc. 6th EUCAS, pp 1–11, 2003.

[6] K. Kajikawa, T. Hayashi, R. Yoshida, M. Iwakuma and K. Funaki, “Numerical evaluation of AC losses in HTS wires with 2D FEM formulated by self magnetic field,” IEEE Trans. Appl. Supercond., vol. 13, no. 2, pp. 3630-3633, Jun. 2003.

[7] Z. Hong, A. M. Campbell and T. A. Coombs, “Numerical solution of critical state in superconductivity by finite element software,” Supercond. Sci. Technol., vol. 19, no. 12, pp. 1246-1252, Dec. 2006.

[8] R. Brambilla, F. Grilli and L. Martini, “Development of an edgeelement model for AC loss computation of high-temperature superconductors,” Supercond. Sci. Technol., vol. 20, no. 1, pp. 16-24, Jan. 2007.

[9] L. Prigozhin, “Solution of thin film magnetization problems in type-II superconductivity,” IEEE Trans. Appl. Supercond., vol. 144, no. 1, pp. 180-193, Jul. 1998.

[10] G. Barnes, M. McCulloch and D. Dew-Hughes, “Computer modelling of type II superconductors in applications,” Supercond. Sci. Technol., Vol. 12, no. 8, pp. 518-522, Aug. 1999.

[11] S. Stavrev, F. Grilli, B. Dutoit, N. Nibbio, E. Vinot, I. Klutsch, G. Meunier, P. Tixador, Y. Yang and E. Martinez, “Comparison of numerical methods for modeling of superconductors,” IEEE Trans. Mag., vol. 38, no. 2, pp. 849–852, Mar. 2002.

[12] A. M. Campbell, “A direct method for obtaining the critical state in two and three dimensions,” Supercond. Sci. Technol. vol. 22, pp. 034005, Mar. 2009.

[13] N. Amemiya, S. Murasawa, N. Banno and K. Miyamoto, “Numerical modelings of superconducting wires for AC loss calculations,” Physica C, vol. 310, no. 1-4, pp. 16-29, Dec. 1998.

[14] N. Amemiya, K. Miyamoto, S. Murasawa, H. Mukai and K. Ohmatsu, “Finite element analysis of AC loss in non-twisted Bi-2223 tape carrying AC transport current and/or exposed to DC or AC external magnetic field,” Physica C, vol. 310, no. 1-4, pp. 30-35, Dec. 1998.

[15] G. Meunier, Y. Floch and C. Guerin, “A nonlinear circuit coupled tt(0)-phi formulation for solid conductors,” IEEE Trans. Magn., vol. 39, no. 3, pp. 1729-1732, May 2003.

[16] M. D. Ainslie and H. Fujishiro, “Modelling of bulk superconductor magnetization,” Supercond. Sci. Tech., vol. 28, pp. 053002, Mar. 2015.

[17] M. Zhang and T. A. Coombs, “3D modeling of high-Tc superconductors by finite element software” Supercond. Sci. Technol., vol. 25 pp. 015009, Dec. 2012.

[18] V. M. Rodriguez-Zermeño, F. Grilli, F. Sirois, “A full 3D timedependent electromagnetic model for Roebel cables,” Supercond. Sci. Technol., vol. 26, no. 5, pp. 052001, May 2013.

[19] V. M. R. Zermeño and F. Grilli, “3D modeling and simulation of 2G HTS stacks and coils,” Supercond. Sci. Technol., vol. 27, no. 4, pp. 044025, Apr. 2014.

[20] F. Grilli, R. Brambilla, F. Sirois, A. Stenvall and S. Memiaghe, “Development of a three-dimensional finite-element model for high temperature superconductors based on the H-formulation,” Cryogenics, vol. 53, pp. 142–147, Jan. 2013.

[21] K. Takeuchi, N. Amemiya, T. Nakamura, O. Maruyama, and T. Ohkuma, “Model for electromagnetic field analysis of superconducting power transmission cable comprising spiraled coated conductors,” Supercond. Sci. Technol., vol. 24, p. 085014, Aug. 2011.

[22] M. Nii, N. Amemiya and T. Nakamura, “Three-dimensional model for numerical electromagnetic field analyses of coated superconductors and its application to Roebel cables,” Supercond. Sci. Technol., vol. 25, no. 9, pp. 095011, Sep. 2012.

[23] H.M. Zhang, M. Zhang, and W.J. Yuan, “An efficient 3D finite element method model based on the T-A formulation for superconducting coated conductors” Supercond. Sci. Technol. vol. 30, no. 2, pp. 095011, Feb. 2017.

[24] S. Yildiz, F. Inanir, A. Cicek, F. Gomory, “Numerical study of AC loss of two-layer HTS power transmission cables composed of coated conductors with a ferromagnetic substrate,” Turk. J. Elec. Eng. & Comp. Sci., vol. 25, pp. 3528 – 3539, Oct. 2017.

SETSCI 2024
info@set-science.com
Copyright © 2024 SETECH
Tokat Technology Development Zone Gaziosmanpaşa University Taşlıçiftlik Campus, 60240 TOKAT-TÜRKİYE