Open Access

Operative-predictive control of a reactor plant based on fuzzy models

Malika Doshanova1*, Ortiq Ruzibayev2, Sherzod Sabirov3, Oybek Begimov4
1Tashkent University of Information Technologies named after Muhammad al-Khwarizmi, Tashkent, Uzbekistan
2Tashkent University of Information Technologies named after Muhammad al-Khwarizmi, Tashkent, Uzbekistan
3Kimyo International University in Tashkent, Tashkent, Uzbekistan
4Tashkent University of Information Technologies named after Muhammad al-Khwarizmi, Tashkent, Uzbekistan
* Corresponding author: yulduzxon_85@mail.ru

Presented at the Cognitive Models and Artificial Intelligence Conference (AICCONF2024), İstanbul, Türkiye, May 25, 2024

SETSCI Conference Proceedings, 2024, 17, Page (s): 34-39 , https://doi.org/10.36287/setsci.17.1.0034

Published Date: 24 June 2024

This article discusses an algorithm for fuzzy control of the technological mode of a reactor unit using fuzzy production models of logical inference and fuzzified measurement information from the control object, discusses the methodology of a computational experiment for modeling technological processes of a reactor unit in order to study control algorithms, and conducts a study of algorithms in a computational experiment. Recommendations are given for configuring the developed algorithms as part of an existing automated process control system and retraining the algorithms, if necessary, by the personnel of the engineering research department of an oil refinery, including using a computational experiment on a mathematical model of the technological process of the reactor unit of a catalytic cracking unit.

Keywords - fuzzy control, fuzzy models, membership functions, process variable, control algorithm, operational-predictive control, reactor unit, regulator

[1] R. H. Abiyev, and O. Kaynak, “Fuzzy wavelet neural networks for identification and control of dynamic plants - A novel structure and a comparative study”, IEEE Trans. on Industrial Electronics, vol. 55(8), pp. 3133-3140, 2008.

[2] J. S. Ahari, A. Farshi, and K. A. Forsat, “Mathematical modeling of the riser reactor in industrial FCC unit”, Pet Coal. vol. 50, №2. pp. 15–24. 2008.

[3] R. A. Aliev, and G. B. Guirimov, Type-2 Fuzzy Neural Networks and Their Applications, Springer International Publishing Switzerland, 2014.

[4] E. Dadios, Fuzzy Logic - Controls, Concepts, Theories and Applications. Intech, 2012.

[5] M. Yu. Doshchanova, “The analysis of the condition and prospects of development of adaptive systems of information transfer and substantiation of principles of their intellectualization” // Materialy XVI Mejdunarodnoy nauchno-metodicheskoy konferentsii, «Informatika: problemy, metodologiya, texnologii», Intellektualnye informatsionnye sistemy. Voronej, pp. 3-10. 2016.

[6] M. Yu. Doshchanova, and A. U. Sobirov, “Review of mathematical models of processes of clearing and regeneration of air” // International conference on importance of information communication technologies in innovative development of sectors of economy. pp. 133-139, 2018.

[7] J. Harris, Fuzzy Logic Applications in Engineering Science. Springer, 2006.

[8] Sh. M. Gulyamov, Yu. Sh. Avazov, M. Y.u Doshchanova, and E. Samadov. “Mathematical modeling of operational-dispatching processes of complex technological objects”, International scientific and technical journal «Сhemical technology. Control and management», №5. pp. 23-28. 2020.

[9] M. Yu. Doshchanova, and F. R. Abdurasulov, “Modeling processes of operational and predictive control of complex technological processes and productions”, International scientific and technical journal «Сhemical technology. Control and management», №4-5(106-107). pp. 133-138. 2022.

[10] G. T. Rahmonberdieva, M. Yu. Doshchanova, and R. D. Irmukhamedova, “Adaptive system of support of acceptance of administrative decisions”, “WCIS-2010” Sixth World Conference on Intelligent Systems for Industrial Automation, pp. 230-232, 2010.

[11] G. T. Rahmonberdieva, M. Yu. Doshchanova, and M. B. Zainutdinova, “Optimization problem of choice of management decisions in systems reengineering business processes”, The 4 th International Conference on “Application of Information and Communication Technologies-AICT2010”, pp. 13-15. 2010.

[12] N. R. Yusupbekov, Sh. M. Gulyamov, F. A. Ergashev, and M. Yu. Doshchanova, “Advanced Control of Complex Technological Processes and Production on the Example of Drying and Granulation of Mineral Fertilizers”, International Journal of Advanced Research in Science, Engineering and Technology, vol.6. issue 3. pp. 8361-8366. 2019.

[13] N. R. Yusupbekov, Sh. M. Gulyamov, and M. Yu. Doshchanova, “Neuro-fuzzy modeling for predictive control systems with complex technological processes and production”, International scientific and technical journal «Сhemical technology. Control and management», №1(91). pp. 73-83. 2020.

[14] N. R. Yusupbekov, Sh. M. Gulyamov, and M. Yu. Doshanova, “Neural identification of a dynamic model of a technological process”, International conference on information science and communications technologies ICISCT 2019 Applications, Trends and Opportunities. pp. 1-8. 2019.

[15] N. R. Yusupbekov, Sh. M. Gulyamov, and M. Yu. Doshchanova, “Process modeling algorithms for operative-forecasting control of complex technological systems”, International scientific and technical journal. Сhemical technology. Control and management, №4-5(88-89). pp. 106-112. 2019.

[16] N. R. Yusupbekov, Sh. M. Gulyamov, and M. Yu. Doshchanova, “Optimization of technological regimes of oil pre-processing plants // International conference on integrated innovative development of Zarafshan region: achievements, challenges and prospects”, pp. 541-546. 2019.

[17] N. R. Yusupbekov, Sh. M. Gulyamov, F.A.Ergashev, and M. Yu. Doshchanova, “Usovershenstvovannoye upravleniye slojnimi texnologicheskimi protsessami i proizvodstvami na primere sushki i granulyatsii mineralnix udobreniy”, Problemi informatiki i energetiki, №6, -S.15-22. 2018.

[18] N. R. Yusupbekov, Sh. M. Gulyamov, V. B. Tarasov, N. B. Usmanova, and M. Yu. Doshchanova, “Raspredelennoye informatsionnoye prostranstvo kak assotsiativnaya sreda infokommunikatsionnix setevix struktur” Jurnal “Promishlenniye ASU I kontrolleri”, №3, pp. 20-29. 2019.

[19] G. Rahmonberdieva, M. Yu. Doshchanova, and K. R. Abdullayeva. “Methods and algorithms of decision-making poorly formalized problems in the conditions of uncertainty” “WCIS-2014” Eighth World Conference on Intelligent Systems for Industrial Automation. Uzbekistan, pp. 384-389, 2014.

[20] M. Z. Babamuxamedova, M. Yu. Doshchanova, and F. A. Ergashev, “Principle of authentic equivalence in problems of Adaptive controls in the conditions of aprioristic Uncertainty”, “Otkritiye semanticheskiye texnologii proyektirovaniya intellektualnix sistem”, OSTIS-2016, Materili VI mejdunarodnoy nauchno-texnicheskoy konferensii, pp. 565-568, 2016.

0
Citations (Crossref)
10.7K
Total Views
73
Total Downloads

Licence Creative Commons This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
SETSCI 2025
info@set-science.com
Copyright © 2025 SETECH
Tokat Technology Development Zone Gaziosmanpaşa University Taşlıçiftlik Campus, 60240 TOKAT-TÜRKİYE