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Abstract – Robot algorithms require faster and more efficient computing due to increasing integration of robot arms to 

automation systems and expanding capabilities of robotic systems. Inverse kinematics calculations used in trajectory generation 

is one of these algorithms. The inverse kinematics problem can be defined as determination of joint angular positions for a 

desired position and orientation of the end-effector. The aim of this paper is to present a closed form solution to the inverse 

kinematics problem of IRB120 robot arm. To this end, forward kinematics is formulated using Denavit-Hartenberg representation 

and analytic solution for inverse kinematics is obtained with a geometric approach.  The inverse kinematics solution is tested for 

different robot arm configurations in a simulation environment written in GNU Octave. The analytical solution successfully 

produced all possible robot configurations. Also, using a sampling rate of 0.001𝑠, cartesian space trajectories are successfully 

mapped to the joint space. It is concluded that presented analytical solution can be used in real time control applications of 

IRB120 robot arm. 
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I. INTRODUCTION 

Inverse kinematic solution of a manipulator holds primary 

importance in the control applications. Trajectory planning in 

control applications is mostly achieved by mapping the task 

space trajectories to the joint space using inverse kinematics. 

For a given set of position and orientation, the inverse 

kinematic solution is not unique and depending on the robot 

structure, various robot postures might give the desired result. 

A general 6R manipulator will have at most 16 such postures 

[1]. However, due to mechanical restrictions IRB120 has four 

different configurations. 

Although, there are numerous analytical, numerical and 

soft-computing solution methods available in the literature, 

every method has its own advantages. If the robot structure has 

a closed form solution, analytical methods will yield the fastest 

result. This is the reason that most of the manipulators are 

designed to give a closed form solution. For example, 

manipulators having a Euler wrist structure (three joint axis 

forming the wrist intersect at a common point) will always 

have a closed form solution [2]. One of the analytical solution 

methods is to use the robot geometry. Trigonometric functions 

resulting from the geometric projection of the robot structure 

can be used to obtain the desired angular positions [3], [4]. 

Another analytical solution method is the use of algebraic 

manipulation on the equations resulting from the kinematic 

model. One such method which utilizes vector analysis theory 

and dual-number algebra can be found in [5]. 

The analytic methods become insufficient in the analysis of 

manipulators which does not yield a closed form solution. In 

such cases, numerical methods can be utilized. Unlike 

analytical methods, numerical counterparts use iterative 

procedures to converge the results. Most numerical methods 

applied in the inverse kinematic problem differ in solution 

methods. It is possible to apply known numerical solution 

methods to set of nonlinear equations such as Gauss-Newton 

[6], cyclic coordinate descent [7], inverse jacobian [8], interval 

analysis [9], and polynomial continuation [10]. However, the 

numerical methods lack speed and in complex mechanisms, 

the solution might not converge for all possible configurations. 

Also, they are known to perform poorly around the singular 

points of the manipulator. 

In recent years, the focus of the study shifted towards soft 

computing methods. Soft computing can be roughly defined as 

deduction of input output relations in a complex system via 

approximate calculations. The methods include artificial 

neural networks(ANN) [11], adaptive neuro-fuzzy inference 

system(ANFIS) [12], genetic algorithm [13], and particle-

swarm optimization algorithm [14]. It is also possible to use 

evolutionary symbolic regression algorithm to produce a 

closed form solution [15]. One important comparative study 

on the performance of these soft computing methods when 

applied to the inverse kinematics problem can be found in [16]. 

Although, ANN and ANFIS gives sufficiently fast results, they 

suffer from accuracy. Also, optimization algorithms are 

similar to the numerical methods which comes with a heavy 

computation cost. 

In this study, closed form inverse kinematic solution for 

IRB120 robot arm is obtained using a geometric approach 

which was first proposed by Lee and Ziegler [3]. The solution 

proved successful in obtaining all possible robot 

configurations. Also, a sample task space trajectory is mapped 

to the joint space using the inverse kinematics equations 

presented. It is important to highlight that the obtained solution 

falls under the analytical solution methods category. 

Compared with algebraic solution methods, it presents a 

simpler formulation, because the method does not deal with 

the manipulation of heavy algebraic equations. Also, the 

method yields faster results than its numerical and soft-

computing counterparts due to its analytic nature. 
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II. MATERIALS AND METHOD 

Kinematic analysis of robot manipulators consists of two 

parts, namely forward and inverse kinematics. Forward 

kinematics is the study of link positions and orientations for a 

given set of joint angular positions(𝜃1, 𝜃2, … . , 𝜃𝑛). This 

concept forms the basis of geometric representation of the 

system. Thus, it will be the starting point for inverse 

kinematics solution of the manipulator. 

A. Kinematic Representation 

Although, there are numerous approaches regarding the 

kinematic representation of robot manipulators, we shall use 

the formulation presented by Denavit and Hartenberg [17].  

Figure 1 gives the established Denavit-Hartenberg(D-H) link 

coordinate systems illustrated both on the manipulator and in 

the simulation environment. 

After establishing the coordinate system, the structure of the 

robot can be represented with four D-H parameters associated 

with each link: the joint angle(𝜃𝑖), link length(𝑑𝑖), offset 

distance(𝑎𝑖), and twist angle(𝛼𝑖). Table 1 gives the D-H 

parameters associated with each link. 

 
Table 1. IRB 120 Robot Arm D-H Kinematic Parameters 

Joint 𝒊 𝜽𝒊(deg) 𝜶𝒊(deg) 𝒂𝒊(mm) 𝒅𝒊(mm) 

1 90 -90 0 124 

2 -90 0 270 0 

3 0 -90 70 0 

4 0 -90 0 302 

5 0 90 0 0 

6 0 0 0 72 

 

B. Forward Kinematics 

Let 𝑎𝑖 , 𝛼𝑖 , 𝑑𝑖, and 𝜃𝑖 be the D-H parameters of link 𝑖, then a 

joint to joint homogeneous transformation matrix 𝑨𝑖 
𝑖−1   which 

maps the coordinates from link 𝑖 − 1 to link 𝑖 can be defined 

as [18]: 

 

 

Ai =  [

cosθi -cosαi sinθi sinαi sinθi ai cosθi
sinθi cosαi cosθi -sinαi cosθi ai sinθi
0 sinαi cosαi di
0 0 0 1

] 
i-1  (1) 

 

Then, the kinematic equation of a manipulator which fully 

describes the position and orientation of every link with 

respect to a base coordinate system can be expressed by the 

successive joint to joint mapping of adjacent links. 

 

𝑻𝑖 
0 = ∏ 𝑨𝑗 

𝑗−1

𝑖

𝑗=1

, 𝑓𝑜𝑟 𝑖 = 1, 2,… , 𝑛 (2) 

 

For easy calculation, it is possible to represent the same 

formula by dividing into two calculation steps. Let 𝑻1 =
𝑨1 
0 𝑨2 

1 𝑨3 
2  and 𝑻2 = 𝑨4 

3 𝑨5 
4 𝑨6 

5 . After successive mappings 

of the respective joints,𝑻1 and 𝑻2 becomes, 

 

𝑻1 = [

𝐶1𝐶23 𝑆1 −𝐶1𝑆23 𝐶1(𝑎2𝐶2 + 𝑎3𝐶23)

𝑆1𝐶23 −𝐶1 −𝑆1𝑆23 𝑆1(𝑎2𝐶2 + 𝑎3𝐶23)
−𝑆23 0 −𝐶23 𝑑1 − 𝑎2𝑆2 − 𝑎3𝑆23
0 0 0 1

] (3) 

 

𝑻2 = [

𝐶4𝐶5𝐶6 − 𝑆4𝑆6 −𝐶4𝐶5𝑆6 − 𝑆4𝐶6 𝐶4𝑆5 𝑑6𝐶4𝑆5
𝑆4𝐶5𝐶6 + 𝐶4𝑆6 −𝑆4𝐶5𝑆6 + 𝐶4𝐶6 𝑆4𝑆5 𝑑6𝑆4𝑆5

−𝑆5𝐶6 𝑆5𝑆6 𝐶5 𝑑4 + 𝑑6𝐶5
0 0 0 1

] 
(4) 

 

where 𝐶𝑖 = 𝑐𝑜𝑠𝜃𝑖; 𝑆𝑖 = sin 𝜃𝑖; 𝐶𝑖𝑗 = cos (𝜃𝑖 + 𝜃𝑗); 𝑆𝑖𝑗 =

sin (𝜃𝑖 + 𝜃𝑗). Then, the orientation and the position of the end-

effector can be expressed as, 

 
𝑻6 = 𝑻1𝑻2 
0  (5) 

 

If the operation is carried out further, the mapping between 

the end-effector and the base coordinate systems can be 

represented without any matrix multiplication. Let 

normal(𝒏),sliding(𝒔), approach(a), and position(𝒑) vectors 

represent the orientation and position of the end-effector 

coordinate system. Then, the homogeneous transformation 

matrix which maps between the end-effector and the base 

coordinate systems is, 

 

 

 

𝑻6 = 𝑻1𝑻2 = [
𝒏 𝒔 𝒂 𝒑
0 0 0 1

] = [

𝑛𝑥 𝑠𝑥 𝑎𝑥 𝑝𝑥
𝑛𝑦 𝑠𝑦 𝑎𝑦 𝑝𝑦
𝑛𝑧 𝑠𝑧 𝑎𝑧 𝑝𝑧
0 0 0 1

] 
0  (6) 

 

Fig. 1 D-H Link Coordinate System 
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C. Inverse Kinematics 

In robotics, the inverse kinematics problem refers to the 

calculation of joint angles for a given position and orientation 

of the end-effector. Unlike forward kinematics, inverse 

kinematics problem is not straight forward and there is not a 

general solution method which is applicable to every 

manipulator type. Moreover, depending on the geometric 

configuration of the manipulator, there might exist multiple 

configurations/solutions for a desired position end orientation. 

Lee and Ziegler have proposed a geometric approach in 

solving inverse kinematics problem for PUMA type robots [2]. 

Their approach utilizes atan2 function by generation two 

analytic solutions for every joint angle, one for sine of the 

angle and the other one for the cosine. The inverse kinematics 

solution presented in this study is an extension of their 

approach for PUMA type robots. 

As the manipulator is designed to imitate human arm, the 

robot configurations are also defined according to the human 

arm structure. Four different configurations of IRB120 are 

defined as, 

Above Arm: Position of the end effector has a positive 

coordinate in the direction of 𝒚2 axis. 

Below Arm: Position of the end effector has a negative 

coordinate in the direction of 𝒚2 axis. 

Wrist Down: 𝒔 ∙ 𝒚5 > 0 

Wrist Up: 𝒔 ∙ 𝒚5 < 0 

These four configurations can be implemented into the 

mathematical formulation using two operators. The values of 

these two operators must be assigned for inverse kinematic 

solution depending on the desired configuration of the robot as 

the following, 

 

𝐸𝐿𝐵𝑂𝑊 = {
−1
+1

, 𝐴𝑏𝑜𝑣𝑒 𝑎𝑟𝑚
, 𝐵𝑒𝑙𝑜𝑤 𝑎𝑟𝑚

 (7) 

 

𝑊𝑅𝐼𝑆𝑇 = {
+1
−1

,𝑊𝑟𝑖𝑠𝑡 𝑑𝑜𝑤𝑛
,𝑊𝑖𝑠𝑡 𝑢𝑝        

 (8) 

 

As the 𝑊𝑅𝐼𝑆𝑇 operator defined by comparing two vectors, 

its value does not have a clear visual indication. Figure 2 

illustrates different arm configurations for 𝐸𝐿𝐵𝑂𝑊 operator. 

 

 
Fig. 2 Above arm(on the Left) and Below Arm(on the Right) Configurations 

of IRB120 

First, the isolation of the first three joints is needed by 

eliminating the wrist motion out of the equation. Since the last 

two links of the robot always moves parallel to each other, it 

is possible to calculate the coordinates of the fourth coordinate 

system without considering the wrist solution. Let 𝒑𝟔 define 

the position vector of the sixth coordinate system and 𝒂 is the 

desired approach vector for the end-effector. Then, the 

coordinates of the fourth coordinate system, which is also the 

position vector of the homogeneous transformation matrix 

𝑻4 
0 , can be expressed as, 

 
𝒑𝟒 = 𝒑𝟔 − 𝑑6𝒂 = [𝑝𝑥 𝑝𝑦 𝑝𝑧]𝑇 (9) 

 

Joint 1 Solution: 

Considering only the first three links of the robot, if the 

kinematic representation of the robot given in Figure 1 is 

projected onto 𝒙0𝒚0 plane, the solution for the first joint can 

be obtained. 

 
𝜃1  =  𝑎𝑡𝑎𝑛2(𝑝𝑦 , 𝑝𝑥) (10) 

 

The use of 𝑎𝑡𝑎𝑛2 function places the solution to the correct 

quadrant, and eliminates the possible complications which 

may arise from the tangent function. 

 

 
Fig. 3 Joint 1 Solution 

Joint 2 Solution: 

By following the same procedure, angular position of the 

second joint can be solved by projecting the robot arm onto the 

𝒙1𝒚1 plane. Unlike the first joint, there are two possible arm 

configurations. From Figure 4, following geometric relations 

can be obtained, 

 

𝑟 = √𝑝𝑥
2 + 𝑝𝑦

2 (11) 

 

𝑅 = √𝑟2 + (𝑝𝑧 − 𝑑1)
2 (12) 

 

𝑠𝑖𝑛𝛼 =  
𝑝𝑧 − 𝑑1
𝑅

 (13) 

 

𝑐𝑜𝑠𝛼 =  
𝑟

𝑅
 (14) 

 

𝑐𝑜𝑠𝛽 =  
𝑎2
2 + 𝑅2 − 𝑎3

2 − 𝑑4
2

2𝑎2𝑅
 (15) 

 

𝑠𝑖𝑛𝛽 =  √1 − 𝑐𝑜𝑠2 𝛽 (16) 

 
𝛼 = 𝑎𝑡𝑎𝑛2(𝑠𝑖𝑛𝛼, 𝑐𝑜𝑠𝛼) (17) 

 
𝛽 = 𝑎𝑡𝑎𝑛2(𝑠𝑖𝑛𝛽, 𝑐𝑜𝑠𝛽) (18) 

 

In Table 2, the values of 𝐸𝐿𝐵𝑂𝑊 operator in the second and 

third joint solutions for different robot configurations are 

given. 
Table 2. Arm Configurations for Joint 2 and 3 

Configuration 𝜽𝟐 𝜽𝟑 𝑬𝑳𝑩𝑶𝑾 
Below Arm −𝛼 + 𝛽 𝜋 − 𝜙 − 𝜓 +1 

Above Arm −𝛼 − 𝛽 −𝜋 − 𝜙 + 𝜓 -1 

 

It is possible to express the formulas given in Table 2 in a 

more compact format. 
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𝜃2 = −𝛼 + 𝐸𝐿𝐵𝑂𝑊 ∙ 𝛽 (19) 

 

Then, sine, cosine and the actual value of 𝜃2 can be 

calculated: 

 
𝑠𝑖𝑛𝜃2 = −𝑠𝑖𝑛𝛼 𝑐𝑜𝑠𝛽 + 𝐸𝐿𝐵𝑂𝑊 ∙ 𝑐𝑜𝑠𝛼 𝑠𝑖𝑛𝛽  (20) 

 
𝑐𝑜𝑠𝜃2 =  𝑐𝑜𝑠𝛼 𝑐𝑜𝑠𝛽 + 𝐸𝐿𝐵𝑂𝑊 ∙ 𝑠𝑖𝑛𝛼 𝑠𝑖𝑛𝛽 (21) 

 
𝜃2 = 𝑎𝑡𝑎𝑛2(𝑠𝑖𝑛𝜃2, 𝑐𝑜𝑠𝜃2)  (22) 

 

 
Fig. 4 Joint 2 Solution for Above Arm(on the Left) and Below Arm(on the 

Right) 

Joint 3 Solution: 

The third joint can be solved by projecting the arm of the 

robot onto 𝒙2𝒚2 plane. Similar to the second joint, there are 

two possible configurations. From Figure 5, necessary 

geometric relations can be obtained as: 

 

𝑐𝑜𝑠𝜓 =
𝑎2
2 + 𝑎3

2+ 𝑑4
2 − 𝑅2

2𝑎2√𝑎2
2 + 𝑑4

2
 (23) 

 

𝑠𝑖𝑛𝜓 =  √1 − 𝑐𝑜𝑠2 𝛽 (24) 

 

𝑐𝑜𝑠𝜙 =
𝑎3

√𝑎3
2 + 𝑑4

2
 (25) 

 

𝑠𝑖𝑛𝜙 =
𝑑4

√𝑎3
2 + 𝑑4

2
 (26) 

 
𝜓 = 𝑎𝑡𝑎𝑛2(𝑠𝑖𝑛𝜓, 𝑐𝑜𝑠𝜓) (27) 

 
𝜙 =  𝑎𝑡𝑎𝑛2(𝑠𝑖𝑛𝜙, 𝑐𝑜𝑠𝜙) (28) 

 

Using the operator values given in Table 2,  𝜃3 can be 

expressed in terms of the desired configuration of the robot: 

 
𝜃3 = −𝜙 − 𝐸𝐿𝐵𝑂𝑊 ∙ (𝜋 − 𝜓) (29) 

 
𝑠𝑖𝑛𝜃3 = 𝑠𝑖𝑛𝜙𝑐𝑜𝑠𝜓 − 𝐸𝐿𝐵𝑂𝑊 ∙ 𝑐𝑜𝑠𝜙 𝑠𝑖𝑛𝜓 (30) 

 
𝑐𝑜𝑠𝜃3 = −𝑐𝑜𝑠𝜙𝑐𝑜𝑠𝜓 − 𝐸𝐿𝐵𝑂𝑊 ∙ 𝑠𝑖𝑛𝜙𝑠𝑖𝑛𝜓 (31) 

 
𝜃3 = 𝑎𝑡𝑎𝑛2(𝑠𝑖𝑛𝜃3, 𝑐𝑜𝑠𝜃3) (32) 

 
Fig. 5 Joint 3 Solution for Above arm(on the Left) and Below Arm(on the 

Right) 

Thus far, we presented the solution of the first three joints. 

With this knowledge, it is possible to calculate the orientation 

of the third coordinate system. From there we can assure the 

necessary orientation of the end-effector is obtained. As it was 

suggested in [3], for the desired end-effector orientation 

following criteria should be met: 

 

𝒛4 =
±(𝒛3 × 𝒂)

‖𝒛3 × 𝒂‖
, 𝑓𝑜𝑟 𝑗𝑜𝑖𝑛𝑡 4 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 (33) 

 
𝒂 = 𝒛5, 𝑓𝑜𝑟 𝑗𝑜𝑖𝑛𝑡 5 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 (34) 

 
𝒔 = 𝒚6, 𝑓𝑜𝑟 𝑗𝑜𝑖𝑛𝑡 6 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 (35) 

 

Joint 4 Solution: 

Depending on the 𝑊𝑅𝐼𝑆𝑇 operator’s value, the desired 

orientation can be obtained via setting  𝒛4 vector to either 𝒛3 ×
𝒂 or −(𝒛3 × 𝒂). Unfortunately, it is not possible to determine 

the sign of 𝒛4 beforehand. Since, the 𝑊𝑅𝐼𝑆𝑇 operator is 

defined by comparing the end-effector and fifth coordinate 

systems, the true sign of the cross product cannot be 

determined without referring to this comparison. Also, when 

the approach vector aligns with 𝒛3 vector, the cross product of 

the two vector becomes zero and the degenerate case occurs. 

These, complications can be overcome by assuming the sign 

of the cross product is positive and defining another sign 

operator. 

 

𝛺 = {

0 𝑑𝑒𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒 𝑐𝑎𝑠𝑒
𝒔 ∙ 𝒚5 𝑖𝑓 𝒔 ∙ 𝒚5 ≠ 0
𝒏 ∙ 𝒚5 𝑖𝑓 𝒔 ∙ 𝒚5 = 0

 (36) 

 

From Figure 1, it can be seen that 𝒚5 and 𝒛4 are always 

parallel to each other. Also, using the 𝒛4 definition given in 

(36), the sign operator can be redefined as, 

 

𝛺 =

{
 
 

 
 

0 𝑑𝑒𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒 𝑐𝑎𝑠𝑒

𝒔 ∙
(𝒛3 × 𝒂)

‖𝒛3 × 𝒂‖
𝑖𝑓 𝒔 ∙ (𝒛3 × 𝒂) ≠ 0

𝒏 ∙
(𝒛3 × 𝒂)

‖𝒛3 × 𝒂‖
𝑖𝑓 𝒔 ∙ (𝒛3 × 𝒂) = 0

 (37) 

 

If the initial sign assumption of the vector cross product is 

correct, Ω and 𝑊𝑅𝐼𝑆𝑇 operator will have the same sign. As a 

result, by combining these two operator and defining a new 

corrected sign operator 𝑀, true orientation of the wrist can be 

obtained. Table 3 gives the corrected sign for all possible 

configurations. 
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Table 3. Wrist Configurations 

Wrist 

Orientation 

𝛀 𝑾𝑹𝑰𝑺𝑻 𝑴 = 𝑾𝑹𝑰𝑺𝑻 ∙ 𝒔𝒊𝒈𝒏(𝛀) 

Down ≥ 0 +1 +1 

Down < 0 +1 -1 

Up ≥ 0 -1 -1 

Up < 0 -1 +1 

 

Using the sign operator 𝑀 and projecting the last three links 

of the robot onto 𝒙4𝒛4 plane, fourth joint can be solved. 

 
𝑠𝑖𝑛𝜃4 = −𝑀(𝑧4 ∙ 𝑥3) (38) 

 
𝑐𝑜𝑠𝜃4 = 𝑀(𝑧4 ∙ 𝑦3) (39) 

 
𝜃4 = 𝑎𝑡𝑎𝑛2(𝑠𝑖𝑛𝜃4, 𝑐𝑜𝑠𝜃4) (40) 

 

 
Fig. 6 Joint 4 Solution 

Joint 5 Solution: 

Using the projection of the wrist onto 𝒙4𝒚4 frame given in 

Figure 7, it is possible to obtain required geometric relations 

for the fifth joint solution. 

 
𝑠𝑖𝑛𝜃5 = 𝒂 ∙ 𝒙4 (41) 

 
𝑐𝑜𝑠𝜃5 = −𝒂 ∙ 𝒚4 (42) 

 
𝜃5 = 𝑎𝑡𝑎𝑛2(𝑠𝑖𝑛𝜃5, 𝑐𝑜𝑠𝜃5) (43) 

 

Note that 𝒙4 and 𝒚4 vector correspond to the 𝑥 and 𝑦 

column of the homogeneous transformation matrix 𝑻4 
0 . With 

the knowledge of the first four joint angles and using the 

procedure described in the forward kinematics section, it is 

possible to calculate this matrix. 

 

 
Fig. 7 Joint 5 Solution 

Joint 6 Solution: 

With the solution of the first five joints, the manipulator 

end-effector is in the desired coordinates, and with the sixth 

joint solution, the orientation will also be aligned with the 

desired orientation. The solution for the last joint can also be 

obtained by following same procedure. Figure 8 gives the 

projection of the wrist onto the 𝒙5𝒚5 plane, and the solution 

for this joint becomes, 

 𝑠𝑖𝑛𝜃6 = 𝒏 ∙ 𝒚5 (44) 
 

𝑐𝑜𝑠𝜃6 = 𝒔 ∙ 𝒚5 (45) 
 

𝜃6 = 𝑎𝑡𝑎𝑛2(𝑠𝑖𝑛𝜃6, 𝑐𝑜𝑠𝜃6) (46) 
 

 
Fig. 8 Joint 6 Solution 

 

Note that when 𝒛3 × 𝒂 = 0, degenerate case occurs. When 

a desired position and orientation coincides with the 

degenerate case, individual values of 𝜃4 and 𝜃6 loses 

importance and only their sum (𝜃4 + 𝜃6) matters. While 

controlling the robot, generally, 𝜃4 is set to its current value 

and the required rotation is obtained with the rotation of 𝜃6 

only. 

D. Trajectory Generation with Inverse Kinematics 

Suppose the manipulator is required to track the space curve 

which is defined in its parametric form. 

 

𝒓⃗ (𝑡) = 𝑎 𝑐𝑜𝑠(𝑡) 𝒊 + 𝑎 𝑠𝑖𝑛(𝑡) 𝒋 + 𝑏𝑡𝒌⃗⃗  (47) 

 

where 𝑎 = 400 𝑚𝑚, 𝑏 = 120 𝑚𝑚, and 0 ≤ 𝑡 ≤ 𝜋. Then, 

the curve can be expressed in terms of arc length(𝑠). 
 

𝒓⃗ (𝑠) = 𝑎 𝑐𝑜𝑠(𝑐𝑠) 𝒊 + 𝑎 𝑠𝑖𝑛(𝑐𝑠) 𝒋 + 𝑏𝑐𝑠𝒌⃗⃗  (48) 

  

where 𝑐 = 1/√𝑎2 + 𝑏2. The task space trajectory defined 

by (47) can be seen in Figure 9. 

 

 
Fig. 9 The  Task Space Trajectory 

In obtaining inverse kinematics solution, the orientation of 

the end-effector is also needed. Although, it is possible to 

define a constant orientation here, it is defined using the 

fundamental properties of the curve to make the simulation 

more realistic. Unit tangent vector of the trajectory can be 

expressed as, 
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𝑻⃗⃗ (𝑠) =
𝑑𝒓⃗ /𝑑𝑠

‖𝑑𝒓⃗ /𝑑𝑠‖
= −𝑎𝑐 𝑠𝑖𝑛(𝑐𝑠) 𝒊 + 𝑎𝑐 𝑐𝑜𝑠(𝑐𝑠) 𝒋 + 𝑏𝑐𝒌⃗⃗  (49) 

 

Then, the unit normal vector of the trajectory becomes, 

 

𝑵⃗⃗ (𝑠) =
𝑑𝑻⃗⃗ /𝑑𝑠

‖𝑑𝑻⃗⃗ /𝑑𝑠‖
= −𝑐𝑜𝑠(𝑐𝑠) 𝒊 − 𝑠𝑖𝑛(𝑐𝑠) 𝒋  (50) 

 

Using unit tangent and unit normal vectors, binormal of the 

trajectory can be defined to complete the right handed 

coordinate system. 

 

𝑩⃗⃗ = 𝑻⃗⃗ × 𝑵⃗⃗ = 𝑏𝑐 𝑠𝑖𝑛(𝑐𝑠) 𝒊 − 𝑏𝑐 𝑐𝑜𝑠(𝑐𝑠) 𝒋 + 𝑎𝑐𝒌⃗⃗  (51) 

 

Now, the homogeneous transformation matrix can be 

expressed to give the desired trajectory. 

 

𝑇6 
0 = [

𝒏 𝒔 𝒂 𝒑
0 0 0 1

] = [
𝑩 −𝑻 −𝑵 𝒓
0 0 0 1

] (52) 

 

𝑇6 
0 = [

𝑏𝑐 𝑠𝑖𝑛(𝑐𝑠) 𝑎𝑐 𝑠𝑖𝑛(𝑐𝑠) 𝑐𝑜𝑠(𝑐𝑠) 𝑎 𝑐𝑜𝑠(𝑐𝑠)

−𝑏𝑐 𝑐𝑜𝑠(𝑐𝑠) −𝑎𝑐 𝑐𝑜𝑠(𝑐𝑠) 𝑠𝑖𝑛(𝑐𝑠) 𝑎 𝑠𝑖𝑛(𝑐𝑠)
𝑎𝑐 −𝑏𝑐 0 𝑏𝑐𝑠
0 0 0 1

] (53) 

 

III. RESULTS 

For kinematics simulation, a computer program which 

covers both forward and inverse kinematics is written in GNU 

Octave. In the Figure 10, results of the forward kinematics 

simulation for individual joints can be seen. The robot pose is 

obtained via forward kinematics procedure explained in the 

previous chapter. Figures are obtained by moving each joint in 

the specified range while keeping other joints stationary. For 

each pose of the robot, angular positions are used to calculate 

the coordinates of each joint. Then, the program uses these 

coordinates to generate the posture of the manipulator. Yellow, 

green, and red coordinate axes represents 𝑥, 𝑦, and 𝑧 

coordinate axes of the respective joints. 

The program can also simulate four different arm 

configurations using the procedure presented. The desired 

position and orientation of the end-effector is supplied to the 

program in the homogeneous transformation matrix format 

𝑇6 
0 . Then, the program calculates necessary angular positions 

of each joint for four different configurations. In order to 

illustrate these configurations, following arbitrary end-effector 

position and orientation is used. 

 

 𝑇6 
0 = [

0.3394 0.9402 0.0312 2.17
−0.4771 0.1444 0.8670 275.38
0.8107 −0.3087 0.4975 595.79
0 0 0 1

] (54) 

 

Angular positions which correspond to this position and 

orientation is calculated and expressed in Table 4, and also, 

calculated angular positions are simulated using forward 

kinematics. The results can be seen in Figure 11. 

 
Table 4. Angular Positions for Different Configurations 

Robot 

Config. 
𝜽𝟏 𝜽𝟐 𝜽𝟑 𝜽𝟒 𝜽𝟓 𝜽𝟔 

Above Arm 

Wrist Down 
90.0 -27.8 -143.9 -2.2 -51.9 21.2 

Above Arm 

Wrist Up 
90.0 -27.8 -143.9 177.8 51.9 -158.8 

Below Arm 

Wrist Down 
90.0 -100.0 -10.0 10.0 10.0 10.0 

Below Arm 

Wrist Up 
90.0 -100.0 -10.0 -170.0 -10.0 -170.0 

Fig. 10 Forward Kinematics Simulation 
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With the desired orientation which was defined for the 

trajectory generated, the approach vector will be always 

normal and the sliding vector will be always tangent to the 

trajectory. To illustrate the robot movement, using sample 

points along the trajectory, plot given in Figure 12 is generated 

for above arm and wrist down configurations. 

 

 
Fig. 12 Trajectory Tracking with Inverse Kinematics 

As it can be seen in the figure, the end-effector passes the 

trajectory with the desired orientation. Using a sampling rate 

of 𝑡 = 0.001𝑠, joint space trajectories which would give the 

desired task space trajectory can be generated. Figure 13 

shows the joint space trajectory of each link. 

 

 
Fig. 13 Joint Space Trajectories 

IV. DISCUSSION 

In Figure 10, individual joint motion is simulated. Motion 

generated from each joint moves the end-effector through a 

circular path. This indicates that the forward kinematics 

formulation is successfully implemented. Also, D-H kinematic 

representation presented itself in a simpler format than the 

ones encountered in the literature like screw theory. 

It can be seen from Figure 11 the program could solve for all 

possible robot arm configurations. The desired configuration 

can easily be defined using 𝐸𝐿𝐵𝑂𝑊 and 𝑊𝑅𝐼𝑆𝑇 operators. 

Note that for a general 6R manipulator, backswept 

configuration of the arm should be considered, but it is 

generally not used in pick and place applications. For this 

reason, the solution was not extended to include this 

configuration. However, the solution method can easily be 

extended by defining another operator which covers 

backswept positions as well. 

Figure 12 and Figure 13 shows a sample trajectory 

generation using inverse kinematics. Since the trajectory 

Fig. 11 Simulation of Different Manipulator Configurations 
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represents a circular helix, a linear increase in 𝜃1 is expected. 

Also, required rotation in the end-effector is obtained with the 

first joint and joints four and six stayed stationary. Using the 

angular positions given in Figure 12, it is possible generate 

joint space velocities and accelerations. Therefore, the solution 

method presented enables to describe a fully defined trajectory 

which can be used in trajectory tracking. 

V. CONCLUSION 

In this study, closed form solution for inverse kinematics 

problem of IRB120 is obtained via a geometric approach. The 

solution is tested using computer simulation and described 

method could calculate joint angles for all possible robot 

configurations. Also, a sample task space trajectory is used to 

generate joint space trajectories. Compared to the numerical 

and soft-computing solution methods, the closed form solution 

performs faster due to its analytical nature. As a result, real 

time control applications of IRB120 is possible with the 

solution presented. 
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