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Abstract — This article presents a comprehensive survey on the integration of Generative Artificial Intelligence (Al) technologies
in radar applications, with a focus on enhancing radar data processing and system capabilities. Generative Al techniques,
particularly Generative Adversarial Networks (GANS) and Variational Autoencoders (VAES), are explored for their potential to
address persistent challenges in radar technology such as noise management, data augmentation, and target classification. The
study investigates how GANSs can generate synthetic radar datasets, aiding in model training when actual data is scarce, and how
VAEs contribute to signal processing by denoising and reconstructing accurate radar signals. The analysis includes case studies
on clutter suppression, radar data augmentation, beam blockage correction, and data fusion, highlighting the transformative
impact of Generative Al on radar systems. This paper aims to provide insights into the current advancements and future directions
of Generative Al applications in radar, suggesting that these technologies hold significant promise for improving the accuracy
and efficiency of radar systems in diverse and dynamic environments.
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I. INTRODUCTION Another model of Generative Al is VAE. In this model,

The main purpose of radar (Radio Detection and Ranging) ~VAES encode data into a lower-dimensional latent space
technology, which has become an indispensable tool in various ~ '€Presenting a probability distribution from which new data
fields such as aviation, maritime, weather forecasting, and ~ PCInts can be generated. This encoding process involves
defense, is to identify the distance and properties of distant ~ transforming —the high-dimensional data into a lower-
objects [L]. This technology, which works by transmitting dimensional but meaningful latent representation. The decoder
electromagnetic energy and interpreting the echoes that ~Part of a VAE then works to reconstruct the input data from
bounce back from objects, facilitates the detection of the this latent space, ensuring that the output closely mimics the
locations, movements, and even material compositions of ~ °riginal input. Unlike GANS, VAEs focus on reconstructing
objects. Despite its extensive applications and ongoing data and ensuring the smoothness of the latent space, which

advancements, it constantly faces challenges such as coping allows for the generation of diverse and realistic outputs [4].

with noisy environments and clutter and accurately classifying By improving data analysis and simulation capabilities,
targets under changing conditions [2]. These challenges are Generative Al can significantly improve Radar applications.

compounded by the need for radars to adapt their For instance, (_BAI\_ls can_be employed to gengra}te synthqtic
functionalities dynamically to complex environments and radar_ data, which is particularly useful_for training machine
diverse application requirements. Iearnlng merIs when actual radar data_ls scarce or too costly

Generative Al is a branch of Al that enables computers to (0 0Ptain. Like GAN models, the studies that get help from
synthesize realistic images, text, and other media. Generative ~ VAES in Radar applications also analyzed in this paper. For
Al focuses on mimicking real content and getting a sense example, VAEs can be used for radar signal processing, where

of the real datasets. Thus, generally, rich and quality datasets ~ theY help in denoising and reconstructing signals from noisy

are needed for Generative Al models to work efficiently. Inthe ~ radar data, thus enhancing the clarity and reliability of the

following two paragraphs, the two most well-known models, detection systems. Thus, t_hls paper analyses previous stugiles

GANs and VVAES, are explained briefly. about_ _Clutter Suppression, Radar Data Augmentation,
In 2014, Goodfellow et al. [3] introduced a Generative Al Denoising and Beam Blockage Correction, Data Fusion and

model that consists of two networks that work adversarially in ~ Récognition in Related Work section, and suggests that

their process, namely GANS. These networks, generator and ~ Generative Al could improve radar applications.

discriminator, try to generate synthetic data gaining inspiration

of the given dataset. The aim of the generator is to generate

most realistic data that the discriminator indiscriminate

between the generated data between sample dataset. In every

iteration, the generator gets feedback from the

discriminator, and tries to enhance its work.
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Il. PREVIOUS WORK

Generative Al, particularly GANs, has emerged as a
transformative solution to the challenges faced by traditional
radar methods in managing and analyzing complex data [5].
These challenges include difficulties in understanding large
and noisy datasets, hampering processes such as recognition,
clutter suppression, and classification of objects. In the
dynamic and unpredictable radar environment, these
limitations significantly impact system accuracy and
effectiveness [6]. However, with generative Al, including
GANs, there's a newfound capability for data augmentation,
clutter suppression, and image resolution enhancement. These
advancements are not merely theoretical concepts; they
address critical needs in navigation, weather forecasting, and
defense applications.

This section aims to delve into the diverse methods
employed, the contexts of their application, and their resultant
outcomes. By exploring the innovative applications of
Generative Al in extracting enhanced value from radar signals,
improvements in detection and classification tasks are evident.
Moreover, these advancements lay the groundwork for future
exploration, indicating potential directions for radar
technology. Through this discussion, we aim to elucidate the
current state-of-the-art in Generative Al for radar applications,
shedding light on existing methodologies and their prospects
for refinement.

A. Clutter Suppression and Classification

The subcategory Clutter Suppression and Classification
plays a crucial role in the improvement of target detection
accuracy. The effective distinction between the targets and
foreign reflections is achieved by the reduction of unwanted
inference.

Zhang, X. et al [7]., aimed to improve the sea-land clutter
classification in OTHR systems. In the article, a GAN-based
approach was used with some modifications. The authors
decided to use a Weighted Loss Semi-Supervised GAN (WL-
SSGAN) to improve the classification performance through
the effective usage of unlabeled data as well as labeled data.
The results of the article show that WL-SSGAN has provided
a better classification for a dataset with 1200 labeled and 2100
unlabeled data with an accuracy of 98.90%. The approach
makes better use of unlabeled data with a comparison of other
classification methods, such as k-nearest neighbors (KNNs) or
supply vector machine (SVMs), and represents a future use for
a similar problem with highly unlabeled data.

With a similar aim Pei, J. et al. [8] proposed a cycleGAN-
based method to improve clutter suppression and target
detection performance for marine surveillance radars.
Researchers decided to use GAN with a machine-learning-
based approach to improve the training process and
adaptability of the model. The results show that the
performance of the radar was increased with a higher ¢ (15.52)
and structural similarity index measure (SSIM) (0.63) values
than a cycleGAN (o= 12.7 and SSIM = 0.37) without a
machine-learning approach. The article enlightens the clutter
suppression and classification problem for future works with a
novel approach.

Another study by Wu, Y. et al. [9] with a complex-valued
self-attention model named CV-SAGAN. Generative Al was
used to improve the processing of complex radar signals and
clutter suppression. The model is self-attention to be able to

accurately detect -especially low-intensity- targets. It was
stated in the article that the model has a higher detection rate
(by 3%) and a lower false alarm rate (FAR) (about 50% of RV-
SAGAN), which shows a more successful result than RV-
SAGAN (real-valued SAGAN) models. The model is also
applicable to over-the-horizon radar (OTHR) systems and
contains valuable information for future applications.

Lastly, Mou, X. et al. [10] use Generative Al for its ability
to learn the complexity of the clutter and the potential to
produce clear images. The proposed method is SCS-GAN
(sea-clutter suppression GAN), with a residual attention
generator and a sea-clutter discriminator. It is used for clutter
suppression in PPI (plan-position indicator) and improving the
visibility of targets. The results of the article show that SCS-
GAN can have fast decluttering and strong generalization
ability with a higher CSR (clutter suppression ratio).
Generalization ability is quite important for the model to work
in various sea states. Therefore, it is thought that this study
may inspire future studies on sea clutter suppression and PPI
image improvements.

All articles have used Generative Al for clutter suppression
and classification but with varying proposed methods.
However, the use of GANSs is a common theme. An obvious
fact is that every algorithm has its advantages and
limitations, which can be seen in Table 1.

Table 1. The Advantages and Limitations of the Proposed Methods for
Clutter Suppression and Classification

Method Advantages Limitations
WL- Effective use of Corc?prllexity 8]; compuitation
SSGAN unlabeled data and the need for more test
data in real-world scenarios
Increment in Thelz con'_straiTts Otf machoilne-
. earning structure an
CycleGAN | potential target model not being tested on
detection -
different sea-states
Innovative Complexity of
CV- approach for computational cost and the
SAGAN complex-valued | need for more test data for
radar signals real-world scenarios
Fast
decluttering
SCS-GAN with Complexity of the structure
generalization
ability

From Table 1, it can be seen that the limitations across these
studies often involve computational complexity and
adaptability to real-world scenarios. Therefore, future research
can focus on improving the adaptability of these methods,
considering the unpredictable nature of radar environments.

B. Radar Data Augmentation

Radar Data Augmentation and its applications enables radar
technology to be used effectively in a wider range of different
applications by augmenting radar data. This data can be used
in specific contexts later, which helps the radar produce more
information, reduce noise, and increase data augmentation.

The research by Scholz, D. et al. [11] aims to solve the
problem of insufficient radar data for applications. The paper
learns radar data using a VAE and shows the impact of
increasing the dataset by generating new and realistic
examples from this data. The results show that VAE can
provide effective data augmentation by improving the
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generalization ability of classifiers. However, the accuracy of
the model depends on the dataset but remains above 90% for
the Infineon Gestures dataset and for the Soli dataset at 88.09%
which authors suggest is because the set has fewer samples and
more classes.

In another research, Fidelis, E. et al. [12] aim to generate
synthetic radar data using GANs for autonomous driving
applications, which is different than every other article's field
mentioned in this paper. The proposed GAN method aims to
improve driverless vehicle technologies by making it easier to
generate radar data that is difficult or dangerous in the real
world. The Fréchet inception distance (FID) score between the
generated data and the test data is 0.51, which is close to the
score between the training and test data. These values suggest
that the generated data is realistic and not copied from the
training data. In the future, this method could help improve
driver-assistance systems in different fields, including military
applications.

Park, S. et al. [13] introduced an Al-assisted method to
augment radar data to improve Unmanned Aerial Vehicle
(UAV) classification. This study produces synthetic Range-
Doppler (RD) maps using cGAN. These synthetic maps
increase the performance of UAV classification by increasing
the training data of the deep convolutional neural network
(CNN) classifier. The results show that using synthetic RD
map data improves the classification performance of the
trained classifier with the best accuracy of 90.91%. In addition
to providing an effective solution to the problem of data
insufficiency in radar applications, it has potential for other
areas of radar technologies with similar data limitations.

Kim, Y. and Hong, S. [14] present a CGAN-based model for
very short-term rainfall prediction using ground radar
observations. The method aims to enhance rainfall forecasting
from 10 minutes to 4 hours, utilizing the Korea Meteorological
Administration’s CAPPI data for training and validation. The
model demonstrates promising results, with high statistical
scores indicating effective rainfall prediction, which could
complement existing forecasting systems. This approach
represents a novel application of CGAN in radar meteorology,
showcasing potential improvements in short-term rainfall
prediction accuracy and offering a valuable tool for real-time
weather monitoring and disaster prevention. For a prediction
time of 1 hour, the Probability of Detection (POD) is 0.8442,
the FAR is 0.2913, and the Critical Success Index (CSI) is
0.6268. These results suggest that the CGAN model is
effective in predicting short-term rainfall with considerable
accuracy, demonstrating its potential utility for enhancing
existing meteorological forecasting systems.

Similarly to the preceding subcategory, the methodologies
within this category exhibit their respective advantages and
limitations, as delineated in Table 2.

Table 2. The Advantages and Limitations of the Proposed Methods for Radar
Data Augmentation

Method Advantages Limitations

. . .. | Effectiveness depends
VAE Generation of realistic on the quality of
data
learned latent space
Efficient generation .

GAN of diverse radar data Effgﬁt{\ﬁgnej;ﬂepgpds

in safety-critical traini?1 da)t/a

scenarios g

CGAN for Effectiveness depends
Range- Augmentation for a gep
- on the quality of
Doppler limited dataset L
M training data
ap
Demonstrates high Prediction
CGAN for | ccuracy in sho_rt-term (_effgc_tlveness may
Rainfall forecast_s with diminish beyond the
Prediction potential to very short-term range
complement existing | due to inherent model
systems. and data limitations.

As presented in Table 2, the efficacy of data augmentation
methodologies is intrinsically dependent to the quality of the
training datasets. A sensible selection of high-quality data is
pivotal to optimizing the performance of these augmentation
techniques, particularly in scenarios where accessing data is
limited.

C. Denoising and Beam Blockage Correction

This subcategory establishes a critical component that
improves the performance and accuracy of radar systems. It
enables radar signals and radar data to be more reliable and
precise. This is particularly critical for accurate target
detection and identification.

For the discussed purpose Tan., S. et al. [15] used a cGAN-
based method to remove beam occluding in weather radar data.
The challenges of data limitations and poor quality in radar
observations made this paper necessary. The proposed method
has the potential to increase the reliability of radar data for
meteorological studies and weather forecasts. The results show
that, over the traditional methods, the CGAN restores
precipitation observations more consistently for two different
datasets, KDAX and KFSW. Also, the radar data has been
accurately recovered with high True Positive (TP), False
Negative (FN), True Negative (TN), and low False Positive
(FP) rates, while the Mean Absolute Error (MAE) remains
significantly low, indicating that the method's predictions
closely match the ground truth. Therefore, it
has great potential for application in the future to improve and
increase the reliability of weather radar data in complex terrain
regions.

With a similar purpose, Armanious, K. etal., [16] the GAN
method is proposed for noise removal to clean radar micro-
Doppler (u-D) signatures. This work stands out because it uses
GANSs to overcome the limitations of traditional cleaning
methods. The results obtained show that the GAN-based
approach is more effective than traditional methods and plays
an important role in radar-based human activity recognition
with SSIM = 0.7231 surpasses other methods, indicating
superior image structure preservation post-denoising and Peak
Signal-to-Noise Ratio (PSNR) of 10.54 dB, it offers higher
signal reconstruction quality.

As the last research in this area, Kumar, A. S. and Kalyani,
S. [17] introduce a two-stage neural network that enhances
radar sensing capabilities under noisy conditions using
orthogonal time frequency space signaling. The methodology
employs a CNN to classify noise levels followed by a GAN for
denoising, achieving significant reductions in mean absolute
error even at low signal-to-noise ratio (SNR) values, thereby
addressing a critical challenge in practical radar applications.
The approach demonstrates a MAE of 0.68 in the Delay
Doppler domain, achieving impressive clarity in signals with
an SNR as low as -20 dB. This novel approach underscores the
adaptability of Generative Al in optimizing radar signal
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processing and paves the way for improved detection and
surveillance operations.

The limitations and advantages of the methods used in
various studies can be seen in Table 3.

Table 3. The Advantages and Limitations of the Proposed Methods for
Denoising and Beam Blockage Correction

Method Advantages Limitations
g(?r'rbg;‘tifr? r Effective restoration resto(r?al:ia()l:]t)t/i: fends
blockageg of blocked radar data on the training data
. Effectiveness
c¢GAN for p- Adaptive and depends on the

generalizable

D signatures approach to denoising

quality of training
data

Effective denoising in

low SNR Effectiveness

GAN for environments and depends on tthe
denoising - quality of training
accurate noise level data

classification

Table 3 presents a summary of GAN methods for radar data
restoration and noise reduction. It highlights cGAN's effective
restoration of blocked radar data, the adaptability of cGAN for
micro-Doppler signatures, and the efficiency of GAN in
denoising signals in low SNR conditions. A common
limitation across these methods is their dependency on the
quality of the training data, which is a determining factor for
their performance.

D. Data Fusion and Recognition

Data fusion and recognition in radar systems represent the
cutting-edge intersection of signal processing and artificial
intelligence. This segment explores the synthesis of data from
multiple sensors to achieve more accurate and comprehensive
environmental recognition.

Ebel, P. et al., [18] focused on overcoming the challenge of
cloud cover in optical satellite images and for this reason, they
suggested a multi-sensor data fusion approach using a cycle-
consistent GAN. The main goal is to develop a cloud removal
method to clear areas covered by clouds and use these clear
images in many applications, such as environmental
monitoring, agriculture, urban planning, and disaster response.
By integrating synthetic aperture radar (SAR) data into optical
data, the model improves image quality while effectively
removing clouds using the SEN12MS-CR dataset and can be
used in a variety of applications in the future.

Another study published by Guo, Y. et al. [19] suggest
GAN for SAR automatic target recognition (ATR). It offersan
advanced approach to noise removal for ATR. This research
aims to improve noise robustness in SAR ATR and contributes
to potential applications for accurate target recognition in
high-noise environments. On the MSTAR dataset, the
proposed method achieves the highest accuracy of 91.38% and
the lowest accuracy of 78.05%. On the Gotcha dataset, the
proposed method achieves the highest accuracy of 99.17% and
the lowest accuracy of 94.17%.

The research [20] by Xiong, H. et al. aims to deal with the
limited number of instances of ground penetrating radar (GPR)
error data by using GANs. The proposed method will be used
for GPR data generation. This study aims to generate and
improve GPR error data in a challenging field due to limited
samples. GPR-GAN is a method that can generate complex
GPR error data using an adaptive network structure. The

method helps enable training with small datasets and also
improves error detection performance. This technique has
great potential in applications where precise GPR data is
difficult to obtain, such as non-structural testing and similar
areas for military or surveillance purposes.

Lastly, Zheng, C. et al. [21] introduce a semi-supervised
approach for SAR ATR, similar to the article Robust SAR
Automatic Target Recognition Via Adversarial Learning. The
approach is a bit different since it is using a multi-
discriminator GAN (MGAN). The primary goal is to improve
the recognition performance of CNN in SAR ATR. The
method is particularly useful when dealing with limited
labeled sample images. The results of the article show
significant improvements in recognition accuracy. This
approach has potential in both military and civilian fields,
especially in scenarios where collecting extensive labeled
SAR data is challenging.

Every method mentioned under this subcategory is
constructed into Table 4 for a better understanding of their
advantages and limitations in the field.

Table 4. The Advantages and Limitations of the Proposed Methods for
Denoising and Beam Blockage Correction

Method Advantages Limitations
cycle- rerﬁg;ﬁ%“v;g; ds Effectiveness depends
consistent from og tical on the quality of SAR
GAN om op data
imagery
Offers an adaptive
and effective Effectiveness depends
Gﬁﬁéor solution for on the quality of
denoising in SAR training data
ATR
dgglogﬁgr];ct)iroﬁzs q Effectiveness depends
GPR-GAN 9 . on the quality of
adaptable to various training data
GPR tasks g
MGAN for Improved
Semi- prove Effectiveness depends
. recognition .
Supervised . on the quality of
accuracy in SAR s
SAR Target training data
. ATR
Recognition

Table 4 shows a range of GAN methods used for radar data
processing challenges. It features the cycle-consistent GAN
for removing cloud obstructions, a GAN designed for
denoising in SAR ATR, and GPR-GAN, which is customized
for generating GPR data. Additionally, MGAN is spotlighted
for its enhanced recognition accuracy in semi-supervised SAR
ATR tasks. A recurrent theme is the dependency of these
methods' effectiveness on the quality of the training data
provided.

I1l. METHODOLOGY

The methodology section of our paper will outline the
strategic framework applied to evaluate the efficiency and
applications of Generative Al techniques in radar systems. The
roadmap in Fig. 1 encapsulates the logical flow of the paper,
from reviewing Generative Al technologies to observing their
strengths and unique attributes. Subsequent sections will delve
into the constraints and considerations of these techniques,
setting the stage for analyzing their performance outcomes.
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Advantages & Unigue
Features,

Fig. 1 A criteria flowchart for comparative analysis.

The flowchart above in Fig. 1 illustrates our approach to our
analysis, beginning with a thorough review of existing
Generative Al Technologies by their core strengths and
features for greater insight into their potential. At the same
time, however, it's essential to acknowledge any limitations or
practical concerns with proposed methods; finally, the paper
will transition into offering insight into field applications that
connect Generative Al's capabilities directly with its real-
world consequences as part of an exhaustive analysis.

IV.RESULTS

In this section, the trends arising from Generative Al
methods applied to radar technology will be analyzed and
interpreted. With respect to our methodology, the findings
from reviews of previous works will be synthesized with
highlighted limitations of the methods. Therefore, the
adaptability of these methods to overcome blockages and
improve data augmentations will be discussed. Our discussion
also extends beyond the general trends and their limitations.
Within each category, insights to fill the current gaps will be
offered.

A. Clutter Suppression and Classification

Trending Methods in Current Studies: Recent studies in
clutter classification and suppression demonstrate an
increasing use of GANSs. Notably, Zhang, X. et al. [7] utilized
WL-SSGAN to improve sea-land clutter classification for
OTHR systems while Pei, J. et al. [8] implemented cycleGAN-
based techniques for marine surveillance radars to increase
clutter suppression and target detection capabilities. Wu, Y. et
al. [9] created CV-SAGAN to process complex radar signals
more efficiently so they could improve clutter suppression,
while Mou X.et al [10] used SCS-GAN equipped with
Residual Attention Generator and Sea-Clutter Discriminator
for sea clutter suppression within PPI radar images.

Conflicts and Limitations of Methods: While the
advantages of methods were evident and outshone traditional
approaches, there were also limitations and conflicts to take
into account. Complex GAN models with their high
computational costs as well as the need for large and quality
datasets highlighted some points to keep in mind when
applying these methodologies to real-life situations. These
considerations must be kept in mind in order to make these
approaches as useful as possible in real-life settings.

Gaps and Future Directions: As previously discussed,
radar clutter suppression with Generative Al methods reveals
gaps in terms of computational efficiency and model
complexity, so addressing them in current studies is critical for
improving clutter suppression and classification techniques.
Future research directions could involve creating GANs with
reduced computational needs as well as enhanced adaptability
to different operational conditions so they can more reliably
and conveniently be used in real-world applications.

B. Radar Data Augmentation

Trending Methods in Current Studies: Trending methods
used for radar data augmentation include GANs, as well as
VAEs and Conditional GANSs. Techniques such as these being
implemented by researchers like Scholz D et al. [11] and Park
S. etal. [13] are being utilized to enhance data sets to enhance
accuracy and functionality across applications from gesture
recognition to UAV classification.

Conflicts and Limitations of Methods: One major
limitation to Al models lies in their reliance on quality training
data, as evidenced in various studies such as [12] and [14].
Another drawback concerns how well these models generalize
to new, unexpected scenarios; emphasis should be placed on
providing realistic, diverse, and robust datasets as input to
these models.

Gaps and Future Directions: In terms of future directions
for radar data augmentation, it will involve improving
computational efficiencies and creating high-fidelity training
datasets. Addressing any existing gaps could allow for wider
application and adaptability across real world situations,
potentially revolutionizing areas such as meteorology and
autonomous vehicle technology.

C. Denoising and Beam Blockage Correction

Trending Methods in Current Studies: Radar signal
processing has increasingly relied on cGAN-based
techniques to improve data accuracy and reliability. Studies by
Tan, S. et al. [15], Armanious K et al. [16], Kumar AS and
Kalyani S [17] among others have used such approaches to
remove beam blockage/noise, improve radar data under noisy
conditions or enhance it during times of low signal/noise
conditions. These studies demonstrate an increasing reliance
on GANSs to address specific challenges related to clarity and
precision issues with radar signals.

Conflicts and Limitations: Across these studies, one
common limitation has been their dependence on training data
quality. While cGANSs can significantly enhance radar data
processing, their performance can often be limited by available
and diverse training datasets they are provided with.

Gaps and Future Directions: Future research should seek
to reduce the data dependency of current models through
unsupervised learning or advanced data augmentation
techniques, creating more robust operational environments as
well as handling any scarcity issues in the field. Bridging these
gaps may result in models capable of handling both.

D. Data Fusion and Recognition.

Trending Methods in Current Studies: Recent
advancements in radar data processing reveal an emerging
trend toward using GANs for data fusion. Researches [18],
[19], [20], and [21] have documented this development,
showing it as cycle-consistent GANs for atmospheric
interference removal and multi-discriminator GANs for
improved SAR ATR accuracy being adopted to enhance image
resolution and contrast within radar systems.

Conflicts and Limitations of Methods: Although GANs
offer significant advantages in radar imaging, their
implementation poses unique obstacles. Computational
requirements and the need for high-quality training data often
impede their scalability and efficiency; further contributing to
an imbalance between their potential use in wide scale
deployment.
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Gaps and Future Directions: GANs have proven an ideal
platform for radar data fusion, yet gaps remain when applied
to technologies. Computational efficiency improvement as
well as adaptability improvements will play a pivotal role in
further advancement. Innovative solutions which bridge these
gaps offer great promise to expanding both reliability and
application scope of radar imaging technologies.

V. DISCUSSION

The introduction of Generative Al to radar technology has
revolutionized the way we analyze and interpret signals. Our
investigation has shown a shift away from traditional
approaches towards Al-driven methods, using GANs in
particular. GAN models are able to meet the high accuracy
and fidelity requirements of complex radar environments.

Generative Al implementation in radar systems has yielded
tangible advantages, such as reduced false alarms and
enhanced detection  accuracy,as  well as improved
performance under low SNR conditions. But even though
Generative Al has proven its worth, there remain challenges -
for instance when data are difficult or scarce, relying on high-
quality training data may present difficulties; additionally,
training and deployment of complex models places significant
computational demands on real-time applications.

Future success of Generative Al applications depends on
meeting these challenges head-on. Research should aim at
increasing efficiency and accessibility while refining existing
techniques; furthermore, efforts should explore methods for
reducing computational burden by expanding generalization
with limited data or using unsupervised training methods that
do not depend on large labeled databases; new approaches will
likely emerge as radar technology advances which may
become standard practices or help expand Generative Al
further to unlock its full potential, innovation and collaboration
are key.

VI1.CONCLUSION

GANSs have revolutionized radar technology. By applying
Generative Al models - especially GANs - these
advancements have outshone traditional
approaches, successfully overcoming challenges associated
with clutter suppression, data augmentation, and data fusion
applications. Though their success depends on the availability
of quality training data, Generative Al applications show
promise as future research solutions in radar. The field stands
ready to improve the efficiency and applicability of Al models
for further research purposes.
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