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Abstract – This article presents a comprehensive survey on the integration of Generative Artificial Intelligence (AI) technologies 

in radar applications, with a focus on enhancing radar data processing and system capabilities. Generative AI techniques, 

particularly Generative Adversarial Networks (GANs) and Variational Autoencoders (VAEs), are explored for their potential to 

address persistent challenges in radar technology such as noise management, data augmentation, and target classification. The 

study investigates how GANs can generate synthetic radar datasets, aiding in model training when actual data is scarce, and how 

VAEs contribute to signal processing by denoising and reconstructing accurate radar signals. The analysis includes case studies 
on clutter suppression, radar data augmentation, beam blockage correction, and data fusion, highlighting the transformative 

impact of Generative AI on radar systems. This paper aims to provide insights into the current advancements and future directions 

of Generative AI applications in radar, suggesting that these technologies hold significant promise for improving the accuracy 

and efficiency of radar systems in diverse and dynamic environments. 
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I. INTRODUCTION 

The main purpose of radar (Radio Detection and Ranging) 

technology, which has become an indispensable tool in various 

fields such as aviation, maritime, weather forecasting, and 

defense, is to identify the distance and properties of distant 

objects [1]. This technology, which works by transmitting 

electromagnetic energy and interpreting the echoes that 

bounce back from objects, facilitates the detection of the 

locations, movements, and even material compositions of 

objects. Despite its extensive applications and ongoing 

advancements, it constantly faces challenges such as coping 
with noisy environments and clutter and accurately classifying 

targets under changing conditions [2]. These challenges are 

compounded by the need for radars to adapt their 

functionalities dynamically to complex environments and 

diverse application requirements.  

Generative AI is a branch of AI that enables computers to 

synthesize realistic images, text, and other media. Generative 

AI focuses on mimicking real content and getting a sense 

of the real datasets. Thus, generally, rich and quality datasets 

are needed for Generative AI models to work efficiently. In the 

following two paragraphs, the two most well-known models, 

GANs and VAEs, are explained briefly.  
In 2014, Goodfellow et al. [3] introduced a Generative AI 

model that consists of two networks that work adversarially in 

their process, namely GANs. These networks, generator and 

discriminator, try to generate synthetic data gaining inspiration 

of the given dataset. The aim of the generator is to generate 

most realistic data that the discriminator indiscriminate 

between the generated data between sample dataset. In every 

iteration, the generator gets feedback from the 

discriminator, and tries to enhance its work.  

Another model of Generative AI is VAE. In this model, 

VAEs encode data into a lower-dimensional latent space 

representing a probability distribution from which new data 

points can be generated. This encoding process involves 
transforming the high-dimensional data into a lower-

dimensional but meaningful latent representation. The decoder 

part of a VAE then works to reconstruct the input data from 

this latent space, ensuring that the output closely mimics the 

original input.  Unlike GANs, VAEs focus on reconstructing 

data and ensuring the smoothness of the latent space, which 

allows for the generation of diverse and realistic outputs [4].  

By improving data analysis and simulation capabilities, 

Generative AI can significantly improve Radar applications. 

For instance, GANs can be employed to generate synthetic 

radar data, which is particularly useful for training machine 
learning models when actual radar data is scarce or too costly 

to obtain. Like GAN models, the studies that get help from 

VAEs in Radar applications also analyzed in this paper. For 

example, VAEs can be used for radar signal processing, where 

they help in denoising and reconstructing signals from noisy 

radar data, thus enhancing the clarity and reliability of the 

detection systems. Thus, this paper analyses previous studies 

about Clutter Suppression, Radar Data Augmentation, 

Denoising and Beam Blockage Correction, Data Fusion and 

Recognition in Related Work section, and suggests that 

Generative AI could improve radar applications.  
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II. PREVIOUS WORK 

Generative AI, particularly GANs, has emerged as a 

transformative solution to the challenges faced by traditional 

radar methods in managing and analyzing complex data [5]. 

These challenges include difficulties in understanding large 

and noisy datasets, hampering processes such as recognition, 

clutter suppression, and classification of objects. In the 

dynamic and unpredictable radar environment, these 

limitations significantly impact system accuracy and 

effectiveness [6]. However, with generative AI, including 

GANs, there's a newfound capability for data augmentation, 
clutter suppression, and image resolution enhancement. These 

advancements are not merely theoretical concepts; they 

address critical needs in navigation, weather forecasting, and 

defense applications.  

This section aims to delve into the diverse methods 

employed, the contexts of their application, and their resultant 

outcomes. By exploring the innovative applications of 

Generative AI in extracting enhanced value from radar signals, 

improvements in detection and classification tasks are evident. 

Moreover, these advancements lay the groundwork for future 

exploration, indicating potential directions for radar 

technology. Through this discussion, we aim to elucidate the 
current state-of-the-art in Generative AI for radar applications, 

shedding light on existing methodologies and their prospects 

for refinement. 

A. Clutter Suppression and Classification 

The subcategory Clutter Suppression and Classification 

plays a crucial role in the improvement of target detection 

accuracy. The effective distinction between the targets and 

foreign reflections is achieved by the reduction of unwanted 
inference. 

Zhang, X. et al [7]., aimed to improve the sea-land clutter 

classification in OTHR systems. In the article, a GAN-based 

approach was used with some modifications. The authors 

decided to use a Weighted Loss Semi-Supervised GAN (WL-

SSGAN) to improve the classification performance through 

the effective usage of unlabeled data as well as labeled data. 

The results of the article show that WL-SSGAN has provided 

a better classification for a dataset with 1200 labeled and 2100 

unlabeled data with an accuracy of 98.90%. The approach 

makes better use of unlabeled data with a comparison of other 

classification methods, such as k-nearest neighbors (KNNs) or 
supply vector machine (SVMs), and represents a future use for 

a similar problem with highly unlabeled data. 

With a similar aim Pei, J. et al. [8] proposed a cycleGAN-

based method to improve clutter suppression and target 

detection performance for marine surveillance radars. 

Researchers decided to use GAN with a machine-learning-

based approach to improve the training process and 

adaptability of the model. The results show that the 

performance of the radar was increased with a higher σ (15.52) 

and structural similarity index measure (SSIM) (0.63) values 

than a cycleGAN (σ= 12.7 and SSIM = 0.37) without a 
machine-learning approach. The article enlightens the clutter 

suppression and classification problem for future works with a 

novel approach. 

Another study by Wu, Y. et al. [9] with a complex-valued 

self-attention model named CV-SAGAN. Generative AI was 

used to improve the processing of complex radar signals and 

clutter suppression. The model is self-attention to be able to 

accurately detect -especially low-intensity- targets. It was 

stated in the article that the model has a higher detection rate 

(by 3%) and a lower false alarm rate (FAR) (about 50% of RV-

SAGAN), which shows a more successful result than RV-

SAGAN (real-valued SAGAN) models. The model is also 

applicable to over-the-horizon radar (OTHR) systems and 
contains valuable information for future applications. 

Lastly, Mou, X. et al. [10] use Generative AI for its ability 

to learn the complexity of the clutter and the potential to 

produce clear images. The proposed method is SCS-GAN 

(sea-clutter suppression GAN), with a residual attention 

generator and a sea-clutter discriminator. It is used for clutter 

suppression in PPI (plan-position indicator) and improving the 

visibility of targets. The results of the article show that SCS-

GAN can have fast decluttering and strong generalization 

ability with a higher CSR (clutter suppression ratio). 

Generalization ability is quite important for the model to work 
in various sea states. Therefore, it is thought that this study 

may inspire future studies on sea clutter suppression and PPI 

image improvements. 

All articles have used Generative AI for clutter suppression 

and classification but with varying proposed methods. 

However, the use of GANs is a common theme.  An obvious 

fact is that every algorithm has its advantages and 

limitations, which can be seen in Table 1. 

Table 1. The Advantages and Limitations of the Proposed Methods for 

Clutter Suppression and Classification 

Method Advantages Limitations 

WL-
SSGAN 

Effective use of 
unlabeled data 

Complexity of computation 
and the need for more test 

data in real-world scenarios 

cycleGAN 
Increment in 

potential target 
detection 

The constraints of machine-
learning structure and 

model not being tested on 

different sea-states 

CV-
SAGAN 

Innovative 
approach for 

complex-valued 
radar signals 

Complexity of 
computational cost and the 
need for more test data for 

real-world scenarios 

SCS-GAN 

Fast 

decluttering 
with 

generalization 
ability 

Complexity of the structure 

 

From Table 1, it can be seen that the limitations across these 

studies often involve computational complexity and 

adaptability to real-world scenarios. Therefore, future research 

can focus on improving the adaptability of these methods, 

considering the unpredictable nature of radar environments. 

B. Radar Data Augmentation 

Radar Data Augmentation and its applications enables radar 

technology to be used effectively in a wider range of different 

applications by augmenting radar data. This data can be used 

in specific contexts later, which helps the radar produce more 

information, reduce noise, and increase data augmentation. 

The research by Scholz, D. et al. [11] aims to solve the 

problem of insufficient radar data for applications. The paper 

learns radar data using a VAE and shows the impact of 

increasing the dataset by generating new and realistic 

examples from this data. The results show that VAE can 

provide effective data augmentation by improving the 
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generalization ability of classifiers. However, the accuracy of 

the model depends on the dataset but remains above 90% for 

the Infineon Gestures dataset and for the Soli dataset at 88.09% 

which authors suggest is because the set has fewer samples and 

more classes. 

In another research, Fidelis, E. et al. [12] aim to generate 
synthetic radar data using GANs for autonomous driving 

applications, which is different than every other article's field 

mentioned in this paper. The proposed GAN method aims to 

improve driverless vehicle technologies by making it easier to 

generate radar data that is difficult or dangerous in the real 

world. The Fréchet inception distance (FID) score between the 

generated data and the test data is 0.51, which is close to the 

score between the training and test data. These values suggest 

that the generated data is realistic and not copied from the 

training data. In the future, this method could help improve 

driver-assistance systems in different fields, including military 
applications. 

Park, S. et al. [13] introduced an AI-assisted method to 

augment radar data to improve Unmanned Aerial Vehicle 

(UAV) classification. This study produces synthetic Range-

Doppler (RD) maps using cGAN. These synthetic maps 

increase the performance of UAV classification by increasing 

the training data of the deep convolutional neural network 

(CNN) classifier. The results show that using synthetic RD 

map data improves the classification performance of the 

trained classifier with the best accuracy of 90.91%. In addition 

to providing an effective solution to the problem of data 

insufficiency in radar applications, it has potential for other 
areas of radar technologies with similar data limitations. 

Kim, Y. and Hong, S. [14] present a CGAN-based model for 

very short-term rainfall prediction using ground radar 

observations. The method aims to enhance rainfall forecasting 

from 10 minutes to 4 hours, utilizing the Korea Meteorological 

Administration’s CAPPI data for training and validation. The 

model demonstrates promising results, with high statistical 

scores indicating effective rainfall prediction, which could 

complement existing forecasting systems. This approach 

represents a novel application of CGAN in radar meteorology, 

showcasing potential improvements in short-term rainfall 
prediction accuracy and offering a valuable tool for real-time 

weather monitoring and disaster prevention. For a prediction 

time of 1 hour, the Probability of Detection (POD) is 0.8442, 

the FAR is 0.2913, and the Critical Success Index (CSI) is 

0.6268. These results suggest that the CGAN model is 

effective in predicting short-term rainfall with considerable 

accuracy, demonstrating its potential utility for enhancing 

existing meteorological forecasting systems. 

Similarly to the preceding subcategory, the methodologies 

within this category exhibit their respective advantages and 

limitations, as delineated in Table 2. 

Table 2. The Advantages and Limitations of the Proposed Methods for Radar 

Data Augmentation 

Method Advantages Limitations 

VAE 
Generation of realistic 

data 

Effectiveness depends 
on the quality of 

learned latent space 

GAN 

Efficient generation 
of diverse radar data 

in safety-critical 
scenarios 

Effectiveness depends 
on the quality of 

training data 

cGAN for 
Range-
Doppler 

Map 

Augmentation for a 
limited dataset 

Effectiveness depends 
on the quality of 

training data 

cGAN for 
Rainfall 

Prediction 

Demonstrates high 
accuracy in short-term 

forecasts with 
potential to 

complement existing 
systems. 

Prediction 
effectiveness may 

diminish beyond the 
very short-term range 
due to inherent model 
and data limitations. 

 

As presented in Table 2, the efficacy of data augmentation 

methodologies is intrinsically dependent to the quality of the 

training datasets. A sensible selection of high-quality data is 

pivotal to optimizing the performance of these augmentation 

techniques, particularly in scenarios where accessing data is 

limited. 

C. Denoising and Beam Blockage Correction 

This subcategory establishes a critical component that 

improves the performance and accuracy of radar systems. It 

enables radar signals and radar data to be more reliable and 

precise. This is particularly critical for accurate target 

detection and identification. 

For the discussed purpose Tan., S. et al. [15] used a cGAN-

based method to remove beam occluding in weather radar data. 

The challenges of data limitations and poor quality in radar 

observations made this paper necessary. The proposed method 

has the potential to increase the reliability of radar data for 

meteorological studies and weather forecasts. The results show 

that, over the traditional methods, the CGAN restores 
precipitation observations more consistently for two different 

datasets, KDAX and KFSW. Also, the radar data has been 

accurately recovered with high True Positive (TP), False 

Negative (FN), True Negative (TN), and low False Positive 

(FP) rates, while the Mean Absolute Error (MAE) remains 

significantly low, indicating that the method's predictions 

closely match the ground truth. Therefore, it 

has great potential for application in the future to improve and 

increase the reliability of weather radar data in complex terrain 

regions. 

With a similar purpose, Armanious, K.  et al., [16] the GAN 
method is proposed for noise removal to clean radar micro-

Doppler (µ-D) signatures. This work stands out because it uses 

GANs to overcome the limitations of traditional cleaning 

methods. The results obtained show that the GAN-based 

approach is more effective than traditional methods and plays 

an important role in radar-based human activity recognition 

with SSIM = 0.7231 surpasses other methods, indicating 

superior image structure preservation post-denoising and Peak 

Signal-to-Noise Ratio (PSNR) of 10.54 dB, it offers higher 

signal reconstruction quality. 

As the last research in this area, Kumar, A. S. and Kalyani, 
S. [17] introduce a two-stage neural network that enhances 

radar sensing capabilities under noisy conditions using 

orthogonal time frequency space signaling. The methodology 

employs a CNN to classify noise levels followed by a GAN for 

denoising, achieving significant reductions in mean absolute 

error even at low signal-to-noise ratio (SNR) values, thereby 

addressing a critical challenge in practical radar applications. 

The approach demonstrates a MAE of 0.68 in the Delay 

Doppler domain, achieving impressive clarity in signals with 

an SNR as low as -20 dB. This novel approach underscores the 

adaptability of Generative AI in optimizing radar signal 
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processing and paves the way for improved detection and 

surveillance operations. 

The limitations and advantages of the methods used in 

various studies can be seen in Table 3. 

Table 3. The Advantages and Limitations of the Proposed Methods for 

Denoising and Beam Blockage Correction 

Method Advantages Limitations 

cGAN for 
correcting 
blockage 

Effective restoration 
of blocked radar data 

Quality of 
restoration depends 
on the training data 

cGAN for µ-
D signatures 

Adaptive and 
generalizable 

approach to denoising 

Effectiveness 
depends on the 

quality of training 
data 

GAN for 
denoising 

Effective denoising in 
low SNR 

environments and 
accurate noise level 

classification 

Effectiveness 
depends on tthe 

quality of training 

data 

 

Table 3 presents a summary of GAN methods for radar data 

restoration and noise reduction. It highlights cGAN's effective 

restoration of blocked radar data, the adaptability of cGAN for 

micro-Doppler signatures, and the efficiency of GAN in 

denoising signals in low SNR conditions. A common 

limitation across these methods is their dependency on the 

quality of the training data, which is a determining factor for 

their performance. 

D. Data Fusion and Recognition 

Data fusion and recognition in radar systems represent the 

cutting-edge intersection of signal processing and artificial 

intelligence. This segment explores the synthesis of data from 

multiple sensors to achieve more accurate and comprehensive 

environmental recognition. 

Ebel, P. et al., [18] focused on overcoming the challenge of 

cloud cover in optical satellite images and for this reason, they 

suggested a multi-sensor data fusion approach using a cycle-
consistent GAN. The main goal is to develop a cloud removal 

method to clear areas covered by clouds and use these clear 

images in many applications, such as environmental 

monitoring, agriculture, urban planning, and disaster response. 

By integrating synthetic aperture radar (SAR) data into optical 

data, the model improves image quality while effectively 

removing clouds using the SEN12MS-CR dataset and can be 

used in a variety of applications in the future.  

Another study published by Guo, Y.  et al. [19] suggest 

GAN for SAR automatic target recognition (ATR). It offers an 

advanced approach to noise removal for ATR. This research 
aims to improve noise robustness in SAR ATR and contributes 

to potential applications for accurate target recognition in 

high-noise environments. On the MSTAR dataset, the 

proposed method achieves the highest accuracy of 91.38% and 

the lowest accuracy of 78.05%. On the Gotcha dataset, the 

proposed method achieves the highest accuracy of 99.17% and 

the lowest accuracy of 94.17%.  

The research [20] by Xiong, H. et al. aims to deal with the 

limited number of instances of ground penetrating radar (GPR) 

error data by using GANs. The proposed method will be used 

for GPR data generation. This study aims to generate and 

improve GPR error data in a challenging field due to limited 
samples. GPR-GAN is a method that can generate complex 

GPR error data using an adaptive network structure. The 

method helps enable training with small datasets and also 

improves error detection performance. This technique has 

great potential in applications where precise GPR data is 

difficult to obtain, such as non-structural testing and similar 

areas for military or surveillance purposes.  

Lastly, Zheng, C. et al. [21] introduce a semi-supervised 
approach for SAR ATR, similar to the article Robust SAR 

Automatic Target Recognition Via Adversarial Learning. The 

approach is a bit different since it is using a multi-

discriminator GAN (MGAN). The primary goal is to improve 

the recognition performance of CNN in SAR ATR. The 

method is particularly useful when dealing with limited 

labeled sample images. The results of the article show 

significant improvements in recognition accuracy. This 

approach has potential in both military and civilian fields, 

especially in scenarios where collecting extensive labeled 

SAR data is challenging. 

Every method mentioned under this subcategory is 

constructed into Table 4 for a better understanding of their 

advantages and limitations in the field. 

Table 4. The Advantages and Limitations of the Proposed Methods for 

Denoising and Beam Blockage Correction 

Method Advantages Limitations 

cycle-
consistent 

GAN 

Effective in 
removing clouds 

from optical 
imagery 

Effectiveness depends 
on the quality of SAR 

data 

GAN for 
ATR 

Offers an adaptive 
and effective 
solution for 

denoising in SAR 

ATR 

Effectiveness depends 
on the quality of 

training data 

GPR-GAN 

Tailored for GPR 
data generation and 
adaptable to various 

GPR tasks 

Effectiveness depends 
on the quality of 

training data 

MGAN for 
Semi-

Supervised 
SAR Target 
Recognition 

Improved 
recognition 

accuracy in SAR 
ATR 

Effectiveness depends 

on the quality of 
training data 

 

Table 4 shows a range of GAN methods used for radar data 

processing challenges. It features the cycle-consistent GAN 

for removing cloud obstructions, a GAN designed for 

denoising in SAR ATR, and GPR-GAN, which is customized 
for generating GPR data. Additionally, MGAN is spotlighted 

for its enhanced recognition accuracy in semi-supervised SAR 

ATR tasks. A recurrent theme is the dependency of these 

methods' effectiveness on the quality of the training data 

provided. 

III. METHODOLOGY 

The methodology section of our paper will outline the 

strategic framework applied to evaluate the efficiency and 

applications of Generative AI techniques in radar systems. The 

roadmap in Fig. 1 encapsulates the logical flow of the paper, 

from reviewing Generative AI technologies to observing their 

strengths and unique attributes. Subsequent sections will delve 
into the constraints and considerations of these techniques, 

setting the stage for analyzing their performance outcomes.  
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Fig. 1 A criteria flowchart for comparative analysis. 
The flowchart above in Fig. 1 illustrates our approach to our 

analysis, beginning with a thorough review of existing 

Generative AI Technologies by their core strengths and 

features for greater insight into their potential. At the same 

time, however, it's essential to acknowledge any limitations or 

practical concerns with proposed methods; finally, the paper 

will transition into offering insight into field applications that 

connect Generative AI's capabilities directly with its real-

world consequences as part of an exhaustive analysis. 

IV. RESULTS 

In this section, the trends arising from Generative AI 

methods applied to radar technology will be analyzed and 
interpreted. With respect to our methodology, the findings 

from reviews of previous works will be synthesized with 

highlighted limitations of the methods. Therefore, the 

adaptability of these methods to overcome blockages and 

improve data augmentations will be discussed. Our discussion 

also extends beyond the general trends and their limitations. 

Within each category, insights to fill the current gaps will be 

offered.  

A. Clutter Suppression and Classification 

Trending Methods in Current Studies: Recent studies in 

clutter classification and suppression demonstrate an 

increasing use of GANs. Notably, Zhang, X. et al. [7] utilized 

WL-SSGAN to improve sea-land clutter classification for 

OTHR systems while Pei, J. et al. [8] implemented cycleGAN-

based techniques for marine surveillance radars to increase 

clutter suppression and target detection capabilities. Wu, Y. et 

al. [9] created CV-SAGAN to process complex radar signals 

more efficiently so they could improve clutter suppression, 

while Mou X.et al [10] used SCS-GAN equipped with 

Residual Attention Generator and Sea-Clutter Discriminator 
for sea clutter suppression within PPI radar images. 

Conflicts and Limitations of Methods: While the 

advantages of methods were evident and outshone traditional 

approaches, there were also limitations and conflicts to take 

into account. Complex GAN models with their high 

computational costs as well as the need for large and quality 

datasets highlighted some points to keep in mind when 

applying these methodologies to real-life situations. These 

considerations must be kept in mind in order to make these 

approaches as useful as possible in real-life settings. 

Gaps and Future Directions: As previously discussed, 
radar clutter suppression with Generative AI methods reveals 

gaps in terms of computational efficiency and model 

complexity, so addressing them in current studies is critical for 

improving clutter suppression and classification techniques. 

Future research directions could involve creating GANs with 

reduced computational needs as well as enhanced adaptability 

to different operational conditions so they can more reliably 

and conveniently be used in real-world applications. 

B. Radar Data Augmentation 

Trending Methods in Current Studies: Trending methods 

used for radar data augmentation include GANs, as well as 

VAEs and Conditional GANs. Techniques such as these being 

implemented by researchers like Scholz D et al. [11] and Park 

S. et al. [13] are being utilized to enhance data sets to enhance 

accuracy and functionality across applications from gesture 

recognition to UAV classification. 

Conflicts and Limitations of Methods: One major 

limitation to AI models lies in their reliance on quality training 

data, as evidenced in various studies such as [12] and [14]. 
Another drawback concerns how well these models generalize 

to new, unexpected scenarios; emphasis should be placed on 

providing realistic, diverse, and robust datasets as input to 

these models. 

Gaps and Future Directions: In terms of future directions 

for radar data augmentation, it will involve improving 

computational efficiencies and creating high-fidelity training 

datasets. Addressing any existing gaps could allow for wider 

application and adaptability across real world situations, 

potentially revolutionizing areas such as meteorology and 

autonomous vehicle technology. 

C. Denoising and Beam Blockage Correction 

Trending Methods in Current Studies: Radar signal 

processing has increasingly relied on cGAN-based 

techniques to improve data accuracy and reliability. Studies by 

Tan, S. et al. [15], Armanious K et al. [16], Kumar AS and 

Kalyani S [17] among others have used such approaches to 

remove beam blockage/noise, improve radar data under noisy 

conditions or enhance it during times of low signal/noise 

conditions. These studies demonstrate an increasing reliance 
on GANs to address specific challenges related to clarity and 

precision issues with radar signals. 

Conflicts and Limitations: Across these studies, one 

common limitation has been their dependence on training data 

quality. While cGANs can significantly enhance radar data 

processing, their performance can often be limited by available 

and diverse training datasets they are provided with. 

Gaps and Future Directions: Future research should seek 

to reduce the data dependency of current models through 

unsupervised learning or advanced data augmentation 

techniques, creating more robust operational environments as 

well as handling any scarcity issues in the field. Bridging these 
gaps may result in models capable of handling both. 

D. Data Fusion and Recognition. 

Trending Methods in Current Studies: Recent 

advancements in radar data processing reveal an emerging 

trend toward using GANs for data fusion. Researches [18], 

[19], [20], and [21] have documented this development, 

showing it as cycle-consistent GANs for atmospheric 

interference removal and multi-discriminator GANs for 
improved SAR ATR accuracy being adopted to enhance image 

resolution and contrast within radar systems. 

Conflicts and Limitations of Methods: Although GANs 

offer significant advantages in radar imaging, their 

implementation poses unique obstacles. Computational 

requirements and the need for high-quality training data often 

impede their scalability and efficiency; further contributing to 

an imbalance between their potential use in wide scale 

deployment. 
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Gaps and Future Directions: GANs have proven an ideal 

platform for radar data fusion, yet gaps remain when applied 

to technologies. Computational efficiency improvement as 

well as adaptability improvements will play a pivotal role in 

further advancement. Innovative solutions which bridge these 

gaps offer great promise to expanding both reliability and 
application scope of radar imaging technologies. 

 

V. DISCUSSION 

The introduction of Generative AI to radar technology has 

revolutionized the way we analyze and interpret signals. Our 

investigation has shown a shift away from traditional 

approaches towards AI-driven methods, using GANs in 

particular. GAN models are able to meet the high accuracy 

and fidelity requirements of complex radar environments. 

Generative AI implementation in radar systems has yielded 

tangible advantages, such as reduced false alarms and 
enhanced detection accuracy, as well as improved 

performance under low SNR conditions. But even though 

Generative AI has proven its worth, there remain challenges - 

for instance when data are difficult or scarce, relying on high-

quality training data may present difficulties; additionally, 

training and deployment of complex models places significant 

computational demands on real-time applications. 

Future success of Generative AI applications depends on 

meeting these challenges head-on. Research should aim at 

increasing efficiency and accessibility while refining existing 

techniques; furthermore, efforts should explore methods for 

reducing computational burden by expanding generalization 
with limited data or using unsupervised training methods that 

do not depend on large labeled databases; new approaches will 

likely emerge as radar technology advances which may 

become standard practices or help expand Generative AI 

further to unlock its full potential, innovation and collaboration 

are key. 

VI. CONCLUSION 

GANs have revolutionized radar technology. By applying 

Generative AI models - especially GANs - these 

advancements have outshone traditional 

approaches, successfully overcoming challenges associated 
with clutter suppression, data augmentation, and data fusion 

applications. Though their success depends on the availability 

of quality training data, Generative AI applications show 

promise as future research solutions in radar. The field stands 

ready to improve the efficiency and applicability of AI models 

for further research purposes. 

REFERENCES 

[1] MIT Professional Education, “Scanning the future of radar: Next-gen 

uses for classic technology,” MIT Professional Education News, 2024, 

accessed: 2024-04-25. [Online]. Avail- able: 

https://professional.mit.edu/news/articles/scanning-future-radar- next-

gen-uses-classic-technology 

[2] G. Galati, G. Pavan, K. Savci, and C. Wasserzier, “Noise radar 

technology: Waveforms design and field trials,” Sensors, vol. 21, no. 9, 

2021. [Online]. Available: https://www.mdpi.com/1424-

8220/21/9/3216 

[3] I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, 

S. Ozair, A. Courville, and Y. Bengio, “Generative adversarial 

networks,” 2014. 

[4] Z. Ren, “The advance of generative model and variational 

autoencoder,” in 2022 IEEE Conference on Telecommunications, 

Optics and Computer Science (TOCS), 2022, pp. 268–271. 

[5] Xu, J., Peng, Y.-N., Xia, X.-G., Farina, A.: Focus-before-detection 

radar signal processing: part i—challenges and methods. IEEE 

Aerospace and Electronic Systems Magazine 32(9), 48–59 (2017) 

[6] Chen, X., Guan, J., Huang, Y., Xue, Y., Liu, N.: Radar signal 

processing for low-observable marine target-challenges and solutions. 

In: 2019 IEEE International Conference on Signal, Information and 

Data Processing (ICSIDP), pp. 1–6 (2019) 

[7] Zhang, X., Wang, Z., Lu, K., Pan, Q., Li, Y.: A sea-land clutter 

classification framework for over-the-horizon-radar based on weighted 

loss semi-supervised gan. (2023) 

[8] Pei, J., Yang, Y., Wu, Z., Ma, Y., Huo, W., Zhang, Y., Huang, Y., Yang, 

J.: A sea clutter suppression method based on machine learning 

approach for marine surveillance radar. IEEE Journal of Selected 

Topics in Applied Earth Observations and Remote Sensing 15, 3120–

3130 (2022) 

[9] Wu, Y., Zhang, C., Lin, Y., Ma, X., Yi, W.: Cv-sagan: Complex-valued 

self-attention gan on radar clutter suppression and target detection. In: 

2023 IEEE Radar Conference (RadarConf23), pp. 1–6 (2023) 

[10] Mou, X., Chen, X., Guan, J., Dong, Y., Liu, N.: Sea clutter suppression 

for radar PPI images based on SCS-GAN. IEEE Geoscience and 

Remote Sensing Letters 18(11), 1886–1890 (2021) 

[11] Scholz, D., Kreutz, F., Gerhards, P., Huang, J., Hauer, F., Knobloch, 

K., Mayr, C.: Augmenting Radar Data via Sampling from Learned 

Latent Space. IEEE Transactions on Artificial Intelligence and Data 

Processing 60, (2023) 4104308 

[12] E. C. Fidelis, F. Reway, H. Y. S. Ribeiro, P. L. Campos, W. Huber, C. 

Icking, L. A. Faria, and T. Schön, “Generation of realistic synthetic 

raw radar data for automated driving applications using generative 

adversarial networks,” 2023. 

[13] S. Park, S. Lee, and N. Kwak, “Range-doppler map augmentation by 

generative adversarial network for deep uav classification,” in 2022 

IEEE Radar Conference (RadarConf22), pp. 1–7, 2022. 

[14] Kim, Y., Hong, S.: Very Short-Term Rainfall Prediction Using Ground 

Radar Observations and Conditional Generative Adversarial 

Networks. IEEE Transactions on Geoscience and Remote Sensing 60, 

(2022) 4104308 

[15] S. Tan and H. Chen, “A conditional generative adversarial network 

for weather radar beam blockage correction,” IEEE Transactions on 

Geoscience and Remote Sensing, vol. 61, pp. 1–14, 2023. 

[16]  S. Abdulatif, K. Armanious, F. Aziz, U. Schneider, and B. Yang, 

“Towards adversarial denoising of radar micro-doppler signatures”, in 

2019 International Radar Conference (RADAR), IEEE, Sept. 2019.) 

[17] Kumar, A. S., Kalyani, S.: Practical Radar Sensing Using Two Stage 

Neural Network for Denoising OTFS Signals. (2023). DOI: 

https://ar5iv.labs.arxiv.org/html/2310.00897 

[18] P. Ebel, A. Meraner, M. Schmitt, and X. X. Zhu, “Multisensor data 

fusion for cloud removal in global and all-season sentinel-2 imagery,” 

IEEE Transactions on Geoscience and Remote Sensing, vol. 59, no. 7, 

pp. 5866–5878, 2021. 

[19] Y. Guo, L. Du, D. Wei, and C. Li, “Robust sar automatic target 

recognition via adversarial learning,” IEEE Journal of Selected Topics 

in Applied Earth Observations and Remote Sensing, vol. 14, pp. 716–

729, 2021. 

[20] H. Xiong, J. Li, Z. Li, and Z. Zhang, “Gpr-gan: A ground-penetrating 

radar data generative adversarial network,” IEEE Transactions on 

Geoscience and Remote Sensing, vol. 62, pp. 1–14, 2024. 

[21] C. Zheng, X. Jiang, and X. Liu, “Multi-discriminator generative 

adversarial network for semi-supervised sar target recognition,” in 

2019 IEEE Radar Conference (RadarConf), pp. 1–6, 2019. 

https://www.mdpi.com/1424-8220/21/9/3216
https://www.mdpi.com/1424-8220/21/9/3216
https://ar5iv.labs.arxiv.org/html/2310.00897

